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Decentralized Expectation Consistent Signal
Recovery for Phase Retrieval

Chang-Jen Wang , Chao-Kai Wen , Member, IEEE, Shang-Ho Tsai , Senior Member, IEEE,
and Shi Jin , Senior Member, IEEE

Abstract—In this study, we present a phase retrieval solution
that aims to recover signals from noisy phaseless measurements.
A recently proposed scheme known as generalized expectation
consistent signal recovery (GEC-SR), has shown better accuracy,
speed, and robustness than many existing methods. However, sens-
ing high-resolution images with large transform matrices presents
a computational burden for GEC-SR, thereby limiting its applica-
tions to areas, such as real-time implementation. Moreover, GEC-
SR does not support distributed computing, which is an important
requirement to modern computing. To address these issues, we
propose a novel decentralized algorithm called “deGEC-SR” by
leveraging the core framework of GEC-SR. deGEC-SR exhibits
excellent performance similar to GEC-SR but runs tens to hun-
dreds of times faster than GEC-SR. We derive the theoretical
state evolution for deGEC-SR and demonstrate its accuracy us-
ing numerical results. Analysis allows quick generation of perfor-
mance predictions and enriches our understanding on the proposed
algorithm.

Index Terms—Phase retrieval, Bayes-optimal inference,
expectation consistent, decentralized algorithm, distributed
processing.

I. INTRODUCTION

Background—Mathematically, phase retrieval (PR) refers to
the estimation of an unknown vector x ∈ C

N from a nonlinear
function of (noisy) linear measurements in the following form:

y = Q(z) = Q(Ax+w), (1)
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where Q(·) = | · | or | · |2 takes element-wise, A ∈ C
M×N is

known as the transform matrix, and w represents the noise.
Such a problem is of interest in various domains, such as
wireless communications [1]–[3] and physical sciences [4]–[8].
The domain of wireless communications is related to PR in
terms of a certain equipment of wireless systems, especially
those that address economic demands. Such equipment is likely
to use passive envelop detectors [1] or have limited accuracy
in terms of in-phase and quadrature components [2], [3]. The
phase information of such equipment is completely lost or
experiences serious degradation. In physical sciences, such as
optical imaging [4], [5], electron microscopy [6], astronomical
imaging [7], and X-ray diffractive imaging [8], receiving devices
usually measure only the amplitude information (brightness or
intensity) of electromagnetic waves without measuring their
phase information. These applications require the reconstruction
of complete transmission signals (including phase information)
on the basis of the observed amplitude information.

Despite the ubiquity of applications, the PR problem is non-
convex and has been determined to be an NP-hard problem [8].
Several algorithms have been developed to derive solutions in
the past decade. PR algorithms were first developed in the 70 s
by the optics community, where Fienup [9] and Gerchberg-
Saxton [10] proposed a simple interactive projection method
to reconstruct received signals with phase information. PR has
attracted considerably attention in the optimization community.
Most well-established methods, such as PhaseLift [11] and
stochastic Wirtinger Flow (WF) [12], are based on semidefinite
relaxation (SDR). Such convex optimization methods operate by
lifting the original N -dimensional vector space to a high dimen-
sional matrix space, although it results in computational com-
plexity. Other convex relaxation formulations without lifting
(i.e., to avoid increasing the dimension), such as PhaseMax [13],
PhaseLamp [14], and re-weighted WF [15], have been proposed.
The nonlifting-based PR algorithms rely on the so-called spec-
tral initializers [16] that provide accurate initialization vectors.
Among the initialization methods, LSPE [17] shows the best
performance.

In the past few years, numerous algorithms based on the
Bayesian framework have been proposed to solve the inverse
problem to a generalized linear model (GLM) in a uniform
framework with the emergence of compressive sensing. Ap-
proximate message passing (AMP) [18] and its generalization
referred to as GAMP [19] are representative of this class, and
can be applied to estimate x from (1) with various nonlinear
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functions and statistical priors. AMP has been continuously
studied with several updates to enhance the estimation robust-
ness to noise and broaden the class of transform matrices. A
Bayesian GAMP algorithm for PR was studied in [20], [21] and
rigorously analyzed in [22]. Unfortunately, these AMP-based
algorithms are fragile when improper linear transform matri-
ces A are used. The performance of AMP-based algorithms
decreases when transform matrices are outside the special case
of independent and identically distributed (i.i.d.) sub-Gaussian
and zero-mean elements. Thus, several new approaches have
been proposed to address this problem. Under the partial dis-
crete Fourier transform (DFT) matrix, Ma et al. proposed a
signal recovery (SR) method from linear observations called
Turbo-SR [23]. In [24], Turbo-SR was expanded to nonlinear
observations, resulting in the generalized Turbo-SR. Robust
alternatives to AMP for right-rotationally invariant matrices, A,
were independently proposed by two groups of authors [25], [26]
and were labeled as OAMP and VAMP, respectively. The ideas
of OAMP/VAMP have been extended to many applications, such
as unified Bayesian inference [27], matrix completion [28], and
bilinear recovery [29]. VAMP was derived from the expectation
consistent (EC) approximate inference framework of [30] and
applied to the special case of linear transforms. VAMP was then
extended to a GLM in [31], [32]. The generalized EC-SR (GEC-
SR) algorithm [32] outperforms the initial GEC algorithm [31]
because of effective updating. The initial GEC algorithm was
applied to solve the PR problem called prVAMP in [33], [34]
and exhibited superior accuracy, speed, and robustness to many
competing methods.1 In this context, the GEC-SR for PR is
expected to be the best by far.

Despite its remarkable performance, GEC-SR (or the GEC
algorithm) requires matrix inversion per-iteration. The singular
value decomposition (SVD) form of GEC-SR can reduce its
per-iteration cost by pre-computing the SVD of transform matrix
A [31]. However, the calculation of SVD for high dimensions
can be a bottleneck for many applications. For example, consider
sensing a N = 10242 sized image with M = 4 N measure-
ments. The calculation of the SVD of such a large transform
matrix is usually limited when a personal computer is used. An-
other limitation of GEC-SR is that measurements of large optical
imaging are frequently acquired from distributed sensors [7].
Distributed algorithms for GEC-SR are required to broaden its
application. We make three technical contributions to this work
utilizing the excellent performance but limited scalability of
GEC-SR.

Contributions—First, we propose a novel decentralized al-
gorithm called deGEC-SR to address the scalability issues by
leveraging the core framework of GEC-SR [32]. In particular, we
partition measurements into several independent clusters with
small pieces, perform local inference using the original GEC-SR
for each cluster separately, and combine the results to obtain

1Sixteen PR algorithms are compared in [34] under various transform matrices
and signal to noise ratios. Among these algorithms, prVAMP and prSAMP [35]
exhibit the best performance over various scenarios. However, prSAMP is
proposed by making the parallel updates with AMP sequential, indicating that
it is extremely slow. prVAMP achieves the same accuracy as prSAMP but runs
considerably faster.

an approximation to the global posterior. Thus, the computa-
tional burden in each local computing processor is lower than
the original computational burden in centralized processing.
The decentralized architecture allows distributed processing.
The reduction in the complexity requirement and distributed
computing leads to a significant increase in the execution speed
of the algorithm. deGEC-SR not only provides the same excel-
lent performance as GEC-SR and reasonable execution time but
also presents good robustness to transform matrices.

Second, we derive the theoretical state evolutions (SEs) of
GEC-SR and deGEC-SR for PR. We demonstrate their ac-
curacy using the numerical results. Although the decentral-
ization approach benefits the processing speed of large im-
ages, deGEC-SR can result in performance degeneration. The
theoretical SE allows us to quickly obtain the performance
predictions for deGEC-SR with different clusters. Accord-
ingly, we can determine the trade-off between performance and
complexity.

Third, we analyze the response of each module of GEC-SR
to plot the behavior of the iteration trajectory of GEC-SR in a
2D chart. This analysis provides insight into the performance
of GEC-SR and deGEC-SR and enriches our understanding of
several relevant questions as follows: 1) Why is the initialization
of PR more important than other nonlinear problems (e.g.,
quantization)? 2) How does decentralization degenerate perfor-
mance compared with the centralized CGE-SR? Which part of
the algorithm considerably degenerates performance? 3) The
performance degeneration caused by decentralization differs for
different sparsity signals. When does the decentralization result
in minor degeneration of performance?

Related work—A decentralization method was proposed
by [36] to alleviate the scalability issue for developing DWF.
DWF is based on the general perturbed proximal primal-dual
and Lagrangian methods. Despite its advantage, DWF inherits
the same disadvantages as WF. In particular, the convergence
of DWF is excessively slow, and its performance is unaccept-
able when the transform matrix does not follow a Gaussian
distribution. An alternative means to alleviate the scaling issue
is to impose some extra constraints on the transform matrix.
Research [37] proposed to place the transform matrix in a
generalized block diagonal form. However, the entries of the
transform matrix might not allow to be designed in several
applications.

In the context of algorithm development, belief propagation
(BP) [38] is commonly used to approximate the Bayes infer-
ence to ensure tractable computation. The Bayesian approach
combined with a BP technique leads to the so-called AMP
algorithm [18] (or its generalization called GAMP [19]). The
first AMP-based algorithm designed for PR is prGAMP [20].
Another approximation is based on a variational Bayesian,
which leads to prVBEM [39]. Compared with GEC-SR for PR,
prGAMP and prVBEM do not compute the matrix inverse. Thus,
the computational complexity of the latter can be immensely
reduced. Unfortunately, these algorithms require the transform
matrix to be i.i.d. Gaussian (or i.i.d. sub-Gaussian) and en-
counters convergence problems [33]–[35] for generic transform
matrices.
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Other relevant work are conducted by [40], [41]. In [40], a
streaming algorithm based on AMP was proposed to deal with
the case where only a small fraction of measurements arrive at a
time. Work [41] applied the AMP framework in multi-processor
computational systems by processing a subset of measurements
at each processor node. Applying the proposed deGEC-SR to
the above applications is a promising direction.

Notations—For any matrix A, AH is the conjugate trans-
pose of A, and tr(A) denotes the traces of A. The matrix
vector product follows the standard definition in linear algebra.
For convenience, we also define vector-vector multiplication
and division as their component-wise vector multiplication and
division, respectively. That is, for any vectors a = [ai] and
b = [bi], we define ab = [aibi] and a/b = [ai/bi]. In addition,
diag(Q) returns a vector containing the diagonal elements
of Q, and Diag(v) returns a diagonal matrix containing v
itself.NC(x;μ, v) represents a complex Gaussian distribution of
dummy variable x with mean μ and variance v. When a random
variable x follows a probability distribution function f(x), we
write x ∼ f(x).

II. BACKGROUND ON GEC-SR

In this section, we provide an overview of GEC-SR. As
GEC-SR is close to Bayes estimation, we first introduce
Bayes estimators in the next subsection to aid the succeeding
discussion.

A. Preliminary on Bayes Estimation

We first explain the Bayes estimator for (1) under its simple
scalar version, which is given by

y = Q(z + w). (2)

In the simple model, we assume an identity transformation,
that is, z = x. In addition, we let z be a random variable with
distribution P(z) to facilitate the interpretation. We define the
posterior distribution as

P(z|y) = f(y|z)P(z)
Z(y) , (3)

where f(y|z) is a likelihood function, and Z(y) =∫
f(y|z)P(z) dz is the normalization. Then, the Bayes estimate

of z is simply the mean of the posterior distribution

μ̂z =

∫
z P(z|y) dz. (4)

Similarly, the posterior variance of z is given by

v̂z =

∫
|z|2 P(z|y) dz − |μ̂z|2, (5)

which is also the corresponding mean squared error (MSE) of
the posterior mean. If f(y|z) is the true conditional distribution
of measurement y under (2), then the posterior mean is known
as the minimum mean squared error (MMSE) estimator.

When Q(·) = | · | and w is the circularly symmetric complex
Gaussian with mean 0 and variance σ2

w, we obtain [20, (8)]

Pout(y|z) = 2y

σ2
w

e
− y2+|z|2

σ2
w I0

(
2y|z|
σ2
w

)

, (6)

where I0(·) is the 0th-order modified Bessel function of the
first kind. Table I shows the posterior mean and variance when
f(y|z) := Pout(y|z) given above and P(z) := NC(z;μz, vz)
are applied to (3). Additional details are found in [20,
Appendix A]. The above model (2) assumes that noise w is
added prior to function Q. The post-intensity noise model, i.e.,
y = Q(z) + w, can also be considered. In this case, the cor-
responding posterior mean and variance can be found in [20,
(48) & (50)]. The relevant information is listed in Table I for
convenient.

B. GEC-SR

Now, we return to the inference problem under (vector) PR
(1). In this case, the conditional distribution of the measurements
is given by

Pout(y|z) =
M∏

m=1

Pout(ym|zm). (7)

where Pout(ym|zm) is written as (6). We assume that the
components of x are separable, i.e., P(x) =

∏N
n=1 P(xn).

The components of x are chosen to be i.i.d. and modeled by
the Gaussian-Bernoulli distribution

P(x) = (1− ρ)δ(x) + ρNC(x; 0, ρ
−1). (8)

Our goal is to estimate the random vector x from the observed
measurements y. The variance of xn is denoted by Px, which is
1 if P(x) is given by (8). In addition, we define

Pz = Px · tr(AHA)/N, (9)

which is interpreted as the average power of zm.
Similar to (3), the posterior probability distribution can be

computed as

P(x|y) = P(x)
∫
dzPout(y|z)δ(z−Ax)

Z(y) , (10)

where Z(y) is the normalization. Given the posterior probabil-
ity, an estimator for xn can be obtained by the posterior mean

x̂n =

∫
xnP(xn|y) dxn, (11)

where P(xn|y) =
∫
x\xn

dxP(x|y) denotes the marginal poste-

rior probability of xn. The notation
∫
x\xn

dx denotes the inte-

gration over all the variables inx, except for xn, i.e.,
∫
x\xn

dx =
∑

x1
· · ·∑xn−1

∑
xn+1

· · ·∑xN
. The posterior mean estimator

(11) minimizes the (Bayesian) MSE defined as

mse(x) =
1

N

N∑

n=1

E
{|x̂n − xn|2

}
, (12)

where the expectation operator is w.r.t. P(x,y). We refer to (11)
as the Bayes-optimal estimator. If A is an identity matrix, i.e.,
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TABLE I
THE POSTERIOR MEAN AND VARIANCE

Fig. 1. Block diagram of GEC-SR algorithm.

A = I, then z = x and the inference problem can be reduced
to be parallel scalars of the Bayes estimator, as introduced in
Section II.A. However, for the general case, the direct com-
putation of (11) is intractable because of the high-dimensional
integrals in the marginal posteriors P(xn|y).

In our recent study [32], the innovative GEC-SR algorithm
was proposed as an iterative method to recover signal x from
nonlinear measurements y. Although GEC-SR is derived based
on the sophisticated expectation consistent approximation, its
working procedure is straightforward. That is, if z can be es-
timated through the de-nonlinear process from nonlinear mea-
surements y, then the following problem is to recover x from
the noisy linear transformation of z = Ax.

The block diagram of GEC-SR is illustrated in Fig. 1. GEC-
SR consists of three modules, namely, Modules A, B, and C.
Module A computes the posterior mean and variance of z; the
process is interpreted as a de-nonlinear. Module B computes
the posterior mean and variance of x; this process is interpreted
as a de-noising. Module C provides the posterior means and
variances of x and z, while constraining the estimation problem
into the linear space z = Ax. Except for Module C, which is
involved with A, Modules A and B can be performed as parallel
scalars of the Bayes estimator. Each module inputs prior mean
and variance and calculates the posterior mean and variance.
These procedures follow a circular manner, that is,

A→C→︸ ︷︷ ︸
forward

B →C→︸ ︷︷ ︸
backward

A→C→︸ ︷︷ ︸
forward

B→· · · (13)

Each module uses the turbo principle in iterative decoding; that
is, each module passes the extrinsic messages to the next module.
The three modules are executed iteratively until convergence.

We present the GEC-SR algorithm in Algorithm 1. Before
detailing the algorithm, we introduce notations. Given that the
extrinsic messages are modeled as Gaussian, we will frequently
employ a special version of the posterior mean and variance as
in (4)–(5), while modelingP(z) as Gaussian. Therefore, for ease
of notation, we denote by

μ̂1a = Ef{a|μ1a, v1a}, v̂1a = Varf{a|μ1a, v1a} (14)

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 07,2022 at 05:57:22 UTC from IEEE Xplore.  Restrictions apply. 



1488 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

the posterior mean and variance ofa ∼ f(a), respectively, where
the expectations are taken w.r.t.

f(a)NC(a;μ1a, v1a)

Za
(15)

with Za =
∫
f(a)NC(a;μ1a, v1a)da being the normalization.

If f(a) = Pout(y|a) given by (6), then the posterior mean and
variance can be obtained explicitly and given in Table I. If f(a)
is the Gaussian-Bernoulli distribution given by (8), then the
posterior mean and variance are given in the third line of Table I.
In addition, we denote by

μ2a = Extμ{(μ̂1a, v̂1a) \ (μ1a, v1a)}, (16a)

v2a = Extv{(μ̂1a, v̂1a) \ (μ1a, v1a)} (16b)

the extrinsic mean and variance of a, respectively, which are
calculated by excluding the prior mean and variance (μ1a, v1a)
given as

Extv{(μ̂1a, v̂1a) \ (μ1a, v1a)} =

(
1

v̂1a
− 1

v1a

)−1
, (17a)

Extμ{(μ̂1a, v̂1a) \ (μ1a, v1a)} = v2a

(
μ̂1a

v̂1a
− μ1a

v1a

)

.

(17b)

For ease of notation, we often write the extrinsic mean and
variance in pairs as

(μ2a, v2a) = Ext{(μ̂1a, v̂1a) \ (μ1a, v1a)}. (18)

Similarly,

(μ̂1a, v̂1a) = Ef{a|μ1a, v1a}. (19)

If the argument is a vector, then Ef , Varf , Extμ, Extv , Ef , and
Ext are performed element-wise. In GEC-SR, each module
is executed iteratively, and the extrinsic messages serve as the
input priors for the next module. For ease of notation, we use the
subscripts (·)1 and (·)2 to specify the input priors and extrinsic
messages, respectively. That is, if the input priors are denoted
by (·)1, then their corresponding extrinsic messages are denoted
by (·)2, and vice versa.

In GEC-SR, another set of posterior means and variances
of x and z are constrained into the linear space z = Ax,
i.e., Module C. Given the priors z ∼ NC(z;µ2z,Diag(v2z)),
x ∼ NC(x;µ2x,Diag(v2x)), and δ(z−Ax), the posterior
mean estimate of x is the LMMSE estimate given by

µ̂2x = V̂2x

(
Diag(v2x)

−1µ2x +AHDiag(v2z)
−1µ2z

)
,

(20)
where

V̂2x =
[
Diag(v2x)

−1 +AHDiag(v2z)
−1A

]−1
(21)

is the posterior variance of x. The posterior mean and variance
of z are respectively given by

µ̂2z = Aµ̂2x, V̂2z = AV̂2xA
H . (22)

Similarly, for ease of notation, we write

(µ̂2x, V̂2x) = EN{x|µ2x,Diag(v2x),µ2z,Diag(v2z)}.
(23)

Here, to distinguish the notation in (19), we use
notation EN{·|µ2x,Diag(v2x),µ2z,Diag(v2z)} to
specify that the expectation is taken w.r.t. Gaussian for
x ∼ NC(x;µ2x,Diag(v2x)) and z ∼ NC(z;µ2z,Diag(v2z)).

Now, we detail Algorithm 1 as follows. Line 1 computes
the posterior mean and variance of z, which combine the con-
ditional distributions of measurements y and the priors z ∼
NC(z;µ1z,Diag(v1z)). The mean and variance of the priors
z are determined by initialization or by the output of Mod-
ule C (line 9). Line 2 computes the extrinsic information of
z by excluding its prior mean and variance (µ1z,v1z). The
two procedures (i.e., computing the posterior information and
calculating the extrinsic information) comprise Module A and
are performed in each model. Line 3 (Module C) computes the
posterior information of x under the linear space δ(z−Ax),
and line 4 calculates the extrinsic information. Line 5 (Module
B) computes the posterior information of x by considering the
true prior P(x) and the priors x ∼ NC(x;µ1x,Diag(v1x)), and
line 6 calculates the extrinsic information. Line 7 performs the
same procedures as those in line 3 (Module C). The output of this
step is z rather than x. Thus, we perform line 8 to compute the
posterior mean and variance of z. Line 9 computes the extrinsic
information of z and passes it to line 1 (Module A) as prior
information.

III. DEGEC-SR

A. Algorithm

Before proceeding, we analyze the computational complex-
ity of GEC-SR. Recall that each module of GEC-SR inputs
the prior mean and variance and calculates the posterior and
extrinsic mean and variance. The calculations of the extrinsic
information, i.e., (17a)–(17b), are element-wise on the input
vector. Therefore, their computational complexities are linear
with the input size. Except for Module C, the expectation
operations E{·} in (14) are performed element-wise and are,
thus, simple. Consequently, the computational load is mainly at
lines 3 and 7 [precisely (21)], which involve matrix inversions.
The calculation of the matrix inversion of an extremely large
matrix (e.g., M ×N matrix with N = 1, 0242 and M = 4 N )
usually becomes prohibitive for a personal computer.

To address the scalability issue, we partitionM measurements
into L independent clusters, each of which contains Ml = M/L
measurements in the lth cluster. For cluster l, we use super-
script [l] to specify the estimated parameters in each cluster
and subscript l to represent the subset of parameters. Then, the
measurements (1) in cluster l can be written as

yl = Q(zl) = Q(Alx+wl), (24)

where yl and zl measure Ml and Al ∈ C
Ml×N . Now, the

M ×N transform matrix A is split into L sub-matrices Al

with sizes Ml ×N . If GEC-SR is performed independently on
each cluster to estimate x[l] from the observed measurements
yl, then the computational burden in each local computing
processor is lower than the original computational burden in
centralized processing. For example, given Ml < N , we apply
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Fig. 2. Block diagram of deGEC-SR algorithm.

the Woodbury matrix identity to (21) and obtain

[
D−1

x[l] +AH
l D−1

z[l]Al

]−1

= Dx[l] −Dx[l]AH
l

[
Dz[l] +AlDx[l]AH

l

]−1
AlDx[l] .

(25)

whereDx[l] = Diag(v
[l]
2x) andDz[l] = Diag(v

[l]
2z). At this point,

the complexity order for the matrix inversion in (25) is NM2
l .

Considering an extreme case, in whichAl is a 1×N matrix, the
matrix inversion is only O(N). The decomposition significantly
reduces the complexity of GEC-SR.

The block diagram of deGEC-SR is illustrated in Fig. 2, which
shows L parallel GEC-SR operations and a fusion center. GEC-
SR is performed independently on each cluster to estimate x[l]

from the observed measurements yl. In deGEC-SR, Module A
performs the de-nonlinear process, and Module C computes the
posterior means and variances of x[l], which are identical to
those in Algorithm 1. The output of GEC-SR on each cluster is
x[l]. We demonstrate a way to deal with the consensus problem
in the fusion center, i.e., the solutions for the clusters should be
equal.

As the measurements yl’s go through Modules A and C,
we obtain (µ

[l]
1x,v

[l]
1x) for l = 1, . . . , L. After feeding them into

Module B, we insert a constraint to establish x = x[1] = x[2] =
· · · = x[L]. To this end, we introduce

δ
(
x− x[1]

)
δ
(
x− x[2]

)
· · · δ

(
x− x[L]

)
. (26)

Given the priors x[l] ∼ NC(x
[l];µ

[l]
1x,Diag(v

[l]
1x)), l = 1, . . . , L

and the constraint (26), we can obtain a new Gaussian distribu-
tion

NC(x;µ1x,Diag(v1x))

∝
L∏

l=1

NC

(
x[l];µ

[l]
1x,Diag

(
v
[l]
1x

))
δ
(
x− x[l]

)
(27)

where

µ1x = v1x

(
L∑

l=1

µ
[l]
1x/v

[l]
1x

)

, v1x =

(
L∑

l=1

1/v
[l]
1x

)−1

. (28)

Then, similar to that in the original GEC-SR, Module B com-
putes the posterior information (µ̂1x, v̂1x) by considering the
true prior P(x) and the priors x ∼ NC(x;µ1x,Diag(v1x))
given by (27). Next, Module B computes the extrinsic infor-
mation of x[l] for each cluster by excluding the prior mean and
variance (µ

[l]
1x,v

[l]
1x), i.e.,

(
µ

[l]
2x,v

[l]
2x

)
= Ext

{
(µ̂1x, v̂1x) \

(
µ

[l]
1x,v

[l]
1x

)}
. (29)

The extrinsic information (µ
[l]
2x,v

[l]
2x) is then given as feed-back

to Module C of each cluster. Subsequently, the message is
sent to Modules C and A, and the procedure is repeated. We
present the deGEC-SR algorithm in Algorithm 2.

When deGEC-SR is applied to a distributed network,
Modules A and C can be performed in local sensors. Module B
in the fusion center collects the posterior information from local
sensors and then broadcasts the combined posterior information
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(28). With the combined posterior information, each sensor then
computes the extrinsic information (29) for the next update.
Compared with the centralized GEC-SR, deGEC-SR does not
need to store the high-dimensional transform matrix (i.e., A).
The computation loading of Module C is also shared by each
local sensor.

B. Damping Factor

The extrinsic messages that pass among the modules of
deGEC-SR (or GEC-SR) are assumed to be Gaussian distri-
butions. However, these messages might not come close to
Gaussian distributions in practice, particularly at the low sam-
pling rate M/N . In this case, deGEC-SR (or GEC-SR) appears
to have some unexpected numerical issues and diverges. The
same problem is also observed in some message-passing al-
gorithms [30]–[33], [35]. To improve robustness, we use the
damping method [20], [31], [33]. Specifically, we smoothen the
update of (x, z) by using a convex combination with the former
value:

Damp(a(t+ 1)) = βa(t) + (1− β)a(t+ 1), (30)

where β ∈ [0, 1] is the damping factor. For ease of notation,
we still use a(t+ 1) as the output of the damping function,
i.e., a(t+ 1) := Damp(a(t+ 1)). For deGEC-SR, we plug the
damping function after lines 2 and 7, respectively, as

µ
[l]
2z(t+ 1) := Damp

(
µ

[l]
2z(t+ 1)

)
, (31a)

v
[l]
2z(t+ 1) := Damp

(
v
[l]
2z(t+ 1)

)
, (31b)

and

µ
[l]
2x(t+ 1) := Damp

(
µ

[l]
2x(t+ 1)

)
, (32a)

v
[l]
2x(t+ 1) := Damp

(
v
[l]
2x(t+ 1)

)
. (32b)

C. State Evolution

In this subsection, we demonstrate that the iteration per-
formance of deGEC-SR can be characterized by a set of SE
equations. Our derivation is based on a large system limit, i.e.,
M,Ml, N →∞ with fixed sampling ratios

γ = M/N, γl = Ml/N. (33)

In the large system limit, each component of the variance vec-
tors (e.g., v1z, v̂1z, · · · ) in deGEC-SR has a similar value to
their self-average (or expectation) results. With the self-average
property in mind, we are able to obtain explicit expressions for
the SE equations. As we will use a self-average value to represent
each variance vector, we list all the concerned notations below

v
[l]
1z → v

[l]
1z, v̂

[l]
1z → v̂

[l]
1z, v

[l]
1x → v

[l]
1x, v̂

[l]
1x → v̂

[l]
1x,

v
[l]
2z → v

[l]
2z, diag

(
V̂

[l]
2z

)
→ v̂

[l]
2z, v

[l]
2x → v

[l]
2x,

diag
(
V̂

[l]
2x

)
→ v̂

[l]
2x.

Here, the left-hand side of the arrow represents the original vari-
ance vector, and the right-hand side represents the corresponding
self-average value in the large system limit.

Let us start by considering line 1 of Algorithm 2. The average
value of the posterior variance v̂

[l]
1z given prior information

(µ
[l]
1z(t),v

[l]
1z(t)) can be characterized by

v̂
[l]
1z(t+ 1) = E

{
VarPout(y|z)

{
z
∣
∣
∣μ

[l]
1z(t), v

[l]
1z(t)

}}
, (34)

where VarPout(y|z) is calculated by following its definition in

(14) and the outer expectation is taken w.r.t. y and μ
[l]
1z . Note

that μ
[l]
1z(t) is the linear reconstruction from the previous it-

eration and is a random variable. We model it as μ
[l]
1z(t) ∼

NC(μ
[l]
1z(t); 0, Pz − v

[l]
1z(t)). The explicit expression of (34) is

provided later. Line 2 computes the extrinsic variance, and the
result can be characterized by

v
[l]
2z(t+ 1) =

(
1

v̂
[l]
1z(t+ 1)

− 1

v
[l]
1z(t)

)−1
. (35)

Then, we move to line 3. The posterior variance is shown in the
left-hand side of (25). Let λ[l]

i be the ith eigenvalue of AH
l Al,

which has a total of N eigenvalues.2 Then, we obtain

v̂
[l]
2x(t+ 1) =

1

N

N∑

i=1

(
1

v
[l]
2x(t)

+
λ
[l]
i

v
[l]
2z(t+ 1)

)−1
.

Note that if Ml < N , then N −Ml of eigenvalues λ[l]
i are zero.

For brevity, we denote the above expression as

v̂
[l]
2x(t+ 1) =

〈
1

1

v
[l]
2x(t)

+ λ
[l]

v
[l]
2z(t+1)

〉

. (36)

Line 4 computes the extrinsic variance, and the result is

v
[l]
1x(t+ 1) =

(
1

v̂
[l]
2x(t+ 1)

− 1

v
[l]
2x(t)

)−1
. (37)

Line 5 performs the combining, and yields

v1x(t+ 1) =

(
L∑

l=1

1

v
[l]
1x(t+ 1)

)−1

. (38)

Line 6 computes the posterior variance, and we obtain

v̂1x(t+ 1) = E
{
VarP(x)

{
x
∣
∣
∣μ1x, v1x(t+ 1)

}}
, (39)

where the outer expectation is taken w.r.t.μ1x. We will explicitly
explain the expression of (39) later. Line 7 computes the extrinsic
variance of each cluster, and the result is given by

v
[l]
2x(t+ 1) =

(
1

v̂1x(t+ 1)
− 1

v
[l]
1x(t+ 1)

)−1
. (40)

2The eigenvalues of Al are required only in the SE analysis rather than on
the algorithm implementation.

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 07,2022 at 05:57:22 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: DECENTRALIZED EXPECTATION CONSISTENT SIGNAL RECOVERY FOR PHASE RETRIEVAL 1491

Line 8 performs similarly as line 3. Combining lines 8 and 9,
we obtain

v̂
[l]
2z(t+ 1) =

1

γl

〈
λ[l]

1

v
[l]
2x(t+1)

+ λ
[l]

v
[l]
2z(t+1)

〉

. (41)

Finally, line 10 computes the extrinsic variance, and we obtain

v
[l]
1z(t+ 1) =

(
1

v̂
[l]
2z(t+ 1)

− 1

v
[l]
2z(t+ 1)

)−1
. (42)

In the absence of an advanced process during initialization, we
could set v

[l]
1z(0) = Pz and v

[l]
1x(0) = Px. We summarize the

above equations in Proposition 1.
Proposition 1: In the large-system limit, the SE equations of

deGEC-SR, given the initialization v
[l]
1z(0) and v

[l]
1x(0), can be

characterized by

v̂
[l]
1z(t+ 1) = E

{
VarPout(y|z)

{
z
∣
∣
∣μ

[l]
1z(t), v

[l]
1z(t)

}}
, (43a)

v
[l]
2z(t+ 1) =

(
1

v̂
[l]
1z(t+ 1)

− 1

v
[l]
1z(t)

)−1
, (43b)

v̂
[l]
2x(t+ 1) =

〈
1

1

v
[l]
2x(t)

+ λ
[l]

v
[l]
2z(t+1)

〉

, (43c)

v
[l]
1x(t+ 1) =

(
1

v̂
[l]
2x(t+ 1)

− 1

v
[l]
2x(t)

)−1
, (43d)

v1x(t+ 1) =

(
L∑

l=1

1

v
[l]
1x(t+ 1)

)−1

, (43e)

v̂1x(t+ 1) = E
{
VarP(x)

{
x
∣
∣
∣μ1x(t+ 1), v1x(t+ 1)

}}
,

(43f)

v
[l]
2x(t+ 1) =

(
1

v̂1x(t+ 1)
− 1

v
[l]
1x(t+ 1)

)−1
, (43g)

v̂
[l]
2z(t+ 1) =

1

γl

〈
λ[l]

1

v
[l]
2x(t+1)

+ λ
[l]

v
[l]
2z(t+1)

〉

, (43h)

v
[l]
1z(t+ 1) =

(
1

v̂
[l]
2z(t+ 1)

− 1

v
[l]
2z(t+ 1)

)−1
, (43i)

where t = 0, 1, 2 . . . denotes the iteration index.
In the SE equations (43), all the expressions are explicit except

for (43a) and (43f). We first consider (43a). For the PR model, the

posterior variance VarPout(y|z){z
∣
∣
∣μ

[l]
1z(t), v

[l]
1z(t)} is given by;

here, the posterior variance is a function of y and μ
[l]
1z . Note that

y and μ
[l]
1z are random variables. By taking the expectation of the

posterior variance over y andμ[l]
1z (which is detailed in Appendix

A), we can obtain the following explicit expression of (43a):

v̂
[l]
1z(t+ 1) =

v
[l]
1z(t)σ

2
w

v
[l]
1z(t) + σ2

w

+
v
[l]
1z(t)

2(P1z + σ2
w)(

v
[l]
1z(t) + σ2

w

)2

− 4v
[l]
1z(t)

2

(
v
[l]
1z(t) + σ2

w

)3 (
P1z − v

[l]
1z(t)

)

× F
(
v
[l]
1z(t), P1z, σ

2
w

)
, (44)

where the F -function is defined in (55). For the post-intensity
noise model, VarPout(y|z){z|μz, vz} in (48) should be replaced
by line 2 in Table I. The expectation of VarPout(y|z){z|μz, vz}
can be derived by using the similar technique in Appendix A.

Next, we consider (43f). From line 2 of Table I, we can obtain
the posterior variance VarP(x){x|μx1, vx1}, which is a function
of μx1. By taking expectation of the posterior variance over μx1

(which is detailed in Appendix B), we can obtain the following
explicit expression of (43f):

v̂1x(t+ 1) = 1− 1

v1x + ρ−1

×
∫ ∞

0

re−r

ρ+ (1− ρ)(1 + (ρv1x)−1)e
− r

ρv1x

dr,

(45)

where we denote v1x = v1x(t+ 1) for brevity.
Finally, to reflect the damping factor in the SE, we can

introduce it after (43b) and (43g) as

v
[l]
2z(t+ 1) := Damp

(
v
[l]
2z(t+ 1)

)
,

v
[l]
2x(t+ 1) := Damp

(
v
[l]
2x(t+ 1)

)
. (46)

All the equations in Proposition 1 involve a simple calculation
and can be used to evaluate the evolution trajectory of deGEC-
SR. Proposition 1 provides a quick and efficient evaluation of
the performance of the deGEC-SR algorithm.

IV. DISCUSSION AND NUMERICAL RESULTS

A. Damping Factor

Before exhaustive comparisons with other state-of-the-art PR
algorithms can be conducted, we first perform a quick experi-
ment to show the influence of the damping factor on GEC-SR.
We consider an i.i.d. Gaussian transform matrix A ∈ C

M×N

with measurement dimension M = 4, 000 and signal dimen-
sion N = 1, 000. Signals x are generated in accordance to the
Gaussian-Bernoulli distribution (8) with sparse ratio ρ = 0.5.
The elements of noise w are i.i.d. and followNC(w; 0, σ

2
w), and

the SNR of the simulation is defined as ‖Ax‖2/(Mσ2
w).

Fig. 3 shows the MSE as a function of iteration for GEC-SR
under four damping factors, including no damping (i.e., β = 0),
constant damping withβ = 0.1, 0.9, and exponentially decreas-
ing damping β = 0.9t. GEC-SR shows instabilities under the
settings with fast updates of the extrinsic information (i.e.,β = 0
and β = 0.1). The slow update by setting β = 0.9 can prevent
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Fig. 3. MSE as a function of iteration for GEC-SR under four damping
factors for M = 4,000, N = 1, 000, and SNR = 20 dB. Transform matrix

A ∈ CM×N
is an i.i.d. complex Gaussian matrix, and signal x follows the

i.i.d. Gaussian-Bernoulli distribution with ρ = 0.5.

instabilities while slowing the algorithm to obtaining a stationary
solution. Exponentially decreasing damping β = 0.9t, which
starts with a conservative value of β and decreases it exponen-
tially with the number of iterations, shows better trade-off be-
tween instabilities and speed. Consequently, the damping factor
determines the speed of the algorithm and control instabilities.

B. Performance Comparisons

Following the same settings as those in [34, Appendix A], we
compare the performance and running time of two state-of-the-
art PR algorithms, namely, prGAMP [20] and prVAMP [33],
[34] with GEC-SR and deGEC-SR. Other algorithms (such as
PhaseMax and PhaseLift) show worse performance compared
with prGAMP and prVAMP in [33] and are excluded in the
comparisons. All these algorithms require parameter tuning and
initialization. For prGAMP and prVAMP, the parameter settings
(e.g., signal priors and damping factors) are the same as those
listed in [34, Table III]. For GEC-SR, the damping factor of 0.9
is used. All the algorithms are initialized the same as those used
in [34].

First, we consider the case where signals x with dimension
N = 128 are generated on the basis of the Gaussian distribution
[i.e., sparse ratio ρ = 1 in (8)]. Two transform matrices with
entries, namely, 1) i.i.d. standard Gaussian distribution and 2)
i.i.d. (0, 1)-binary distribution, are used. The SNR is set to
50 dB. Fig. 4 shows the reconstruction performance of the
concerned algorithms in terms of MSE.3 The simulation results
are obtained by averaging over 100 realizations. We run all
algorithms for 200 iterations. For Gaussian distributed transform
matrices, all the algorithms operate closely well. GEC-SR can
reconstruct the signals using slightly fewer measurements than
that of competing methods. deGEC-SR slightly degenerates

3The source codes to reproduce this Figure are available on GitHub
https://github.com/Wangchangjen/Matlab_deGEC-SR

Fig. 4. MSE versus sampling rates γ for (a) Gaussian transform matrices and
(b) (0, 1)-binary transform matrices.

because of decomposition. For (0, 1)-binary transform matri-
ces, GEC-SR significantly requires fewer measurements than
that of competing methods, prVAMP is the second best, and
deGEC-SR requires a large sampling rate to achieve accuracy
reconstruction. prGAMP fails in this regime.

Next, we consider the case in which the signals are obtained
from a practical image. The image resolution is N = 50× 50.
For the tests, we set M = 4 N . We run all algorithms for 50
iterations. The reconstruction results are shown in Fig. 5 and
6 for the Gaussian and binary distributed transform matrices,
respectively. Similar to the results in the first experiment, GEC-
SR performs the best in terms of reconstruction performance,
and deGEC-SR slightly degenerates. In the case of (0, 1)-binary
measurements, prGAMP fails because the transform matrix is
not zero-mean.

Table II shows the average running time (referred to as time
complexity) for 50 iterations. Compared with GEC-SR and
prVAMP, deGEC-SR immensely reduces the computation time
by processing multiple clusters simultaneously. The advantage
is attributed to two reasons as follows: 1) The processing of
SVD is disassembled into several SVD operations with small
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Fig. 5. Reconstructions (50× 50) with various PR algorithms from i.i.d.
standard Gaussian measurements for SNR = 10 dB.

Fig. 6. Reconstructions (50× 50) with various PR algorithms from (0, 1)-
binary measurements for SNR = 20 dB.

TABLE II
AVERAGE RUNNING TIMES OF DIFFERENT ALGORITHMS IN SECONDS

dimensions, and the SVD operations for all clusters are simul-
taneously performed. 2) Matrix multiplication in the iteration
is broken down into multiple matrix multiplications that can
be simultaneously processed with small dimensions. Although
the time complexity of prGAMP is extremely low, prGAMP is
strictly limited by its transform matrix. Therefore, deGEC-SR
possesses a low computation time and is robust to the type of
transform matrix.

C. Accuracy of SE

Next, we verify the SE equations of deGEC-SR given in
(43). We consider the case with M = 4, 000 and N = 1, 000.
In particular, the transform matrix is constructed from SVD
A = UΣVH , where orthogonal matrices U and V are drawn
from the normalized DFT matrices and all the singular values

Fig. 7. Simulated and predicted MSEs for deGEC-SR under different clusters
L. ρ = 0.5, M = 4,000, N = 1, 000, and SNR = 20 dB. The simulated MSEs
are averaged over 5,000 realizations.

are equal to one. Signal x follows i.i.d. Gaussian-Bernoulli
distribution (8) with sparse ratio ρ = 0.5. The SNR is set to
20 dB, and the damping factor of 0.9t is used.

Fig. 7 plots the simulation performance of deGEC-SR and
the predicted performance of SE. The simulation results are
obtained by averaging over 5,000 realizations. Given that
GEC-SR diverges when the initials are improperly set,4 we
carefully select the initials as follows: µ2x ← x and µ1z ←√
(Pz − v1z)/PzAx+

√
v1z(Pz − v1z)/Pzw̃, where w̃ is a

standard Gaussian vector. With the initialization, the covari-
ance of (z,µ1z) can consistently follow with the theoretical
derivation in (49). In addition, we set v1z = 0.05 to ensure that
GEC-SR is on its way to a convergence path. The damping
factors for x and z are 0.9t. As shown in the figure, the SE
of deGEC-SR is accurate. The slight divergence between the
simulations and SE predictions is because of the damping factor
of z, which introduces correlations among iterations.5 The SE
predictions are useful because performance predictions can be
obtained without time-consuming Monte Carlo simulations.

D. Performance Degenerations due to Decentralization

The SE equations of deGEC-SR in (43) converge toward a
fixed point, which determines the final performance of deGEC-
SR. Although the computational complexity of deGEC-SR de-
creases with the number of clusters L, the performance of
the algorithm degenerates. To understand how decentralization
leads to performance degeneration, we then detail the evolu-
tion trajectory of deGEC-SR through SE. A similar technique
called the extrinsic information transfer (EXIT) chart was first
developed in the Turbo coding community [43]. Recently, the

4As surveyed in the Introduction, most non-lifting-based PR methods rely on
accurate initializations.

5If without introducing the damping factors for x and z, the GEC-SR to the
PR problem cannot converge. To verify the accuracy of the SE equations, we
also verify them under other nonlinear function Q(·) such as a complex-valued
quantizer. In this case, the GEC-SR can work very well even without introducing
the damping factors.
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Fig. 8. (a) Relevant parameters (i.e., extrinsic information) in GEC-SR for
analyzing evolution trajectory. (b) Transfer chart of Modules C and B. (c)
Transfer chart of Modules C and A.

technique of EXIT chart has been used to design an optimal code
for AMP [44].

Toward this end, we reproduce block diagrams of GEC-SR
while removing the details and only highlighting the rele-
vant parameters (i.e., extrinsic information) in Fig. 8(a). We
first delineate the transfer charts of Modules A and C. For
Module A, the input and output are characterized by v1z and
v2z , respectively. For the right-hand side of Module C, the input
and output are characterized by v2z and v1z , respectively, which
are reversion of Module A. Therefore, if we plot the response
curves of Modules A and C together, then the extrinsic messages
exchanged between two curves (i.e., evolution trajectory) can
be characterized, as shown in Fig. 8(c). Analogously, we can
plot the transfer charts of Modules B and C. For Module B, the
input and output are characterized by v1x and v2x, respectively.
For the left-hand side of Module C, the input and output are
reversed. Therefore, the evolution trajectory between Modules B
and C can also be characterized, as shown in Fig. 8(b). If
the response curve of Module C can be determined, then the
evolution trajectory of v1x can be sketched. Thus, the MSE of x
for GEC-SR can be obtained. However, if we take a closer look
at Module C, then we shall notice that output v1x is determined
not only by v2x, but also by v2z . Therefore, the response curve
of Module C shown in Fig. 8(b) is obtained by the given fixed
value of v2z . Similarly, the response curve of Module C shown
in Fig. 8(c) is obtained by the given value of v2x.

On top of the response curves, we now detail the evolution
trajectory. Recall from (13) that the iteration procedures of GEC-
SR follow a circular manner. Therefore, the evolution trajectory
shall start from a given v1z . With a given v1z , we can obtain v2z
on the basis of the response curve of Module A in Fig. 8(c), i.e.,
the point marked by 1©. With v2z , we can determine the response
curve of Module C in Fig. 8(b). Then, given an initial value of
v2x, we can obtain v1x, as marked by 2© in Fig. 8(b). Thereafter,
we obtain v2x through the transfer function of Module B, as
marked by 3© in Fig. 8(b). Given the new v2x, we determine
the response curve of Module C in Fig. 8(c). Next, we obtain
v1z through the response curve of Module C, as marked by 4©
in Fig. 8(c). We also obtain v1z through the response curve of

Module A, as marked by 5© in Fig. 8(c). Note that with the
new v1z , the response curve of Module C in Fig. 8(b) changes.
Specifically, with the decrease of v2z , the response curve of
Module C shall move to the right, as shown by the dashed line
in Fig. 8(b). We then obtain 6© and 7© in Fig. 8(b). The above
processes are repeated (i.e., 8©, 9©, ...) until a fixed point is
reached.

Fig. 9 shows a practical example of the evolution trajectory
using the same setting as that in Fig. 7. Fig. 9(a) illustrates that
v̂2x starts from −12.51 dB and eventually converges to a fixed
point at −18.29 dB; this result is consistent with that in Fig. 7.
The response curve of Module C continuously moves to the
right with the number of iterations and eventually reaches the
saturation point. Other interesting observations are as follows.
First, we plot another response curve of Module B with a
different sparse ratioρ in Fig. 9(a). We see that the response curve
becomes lower as signal x becomes sparse. This characteristic
implies that the MSE of x can converge to a small value as the
signal becomes sparse. Second, we plot another response curve
of Module A, while removing the nonlinear effect in Fig. 9(b).
In the special linear case, the response curve of Module A is
a horizontal line at −20 dB, which implies that the iteration
between Modules A and C is unnecessary because v2z is always
at−20 dB. However, in the non-linear case, the response curve
of Module A is eventually saturated at around−16 dB and cannot
reach−20 dB. Hence, 4 dB represents an inherent performance
degeneration due to non-linearity. To improve our understand-
ing, we further provide other examples of the response curves
of Module A for different nonlinear functions Q(·) such as the
quantizers in Fig. 10. Compared with that for the one- or two-bit
quantizer, the response curve for the PR becomes saturated at a
low MSE. However, we find that if 1/v1z is close to zero (i.e.,
poor initialization), v2z for PR is worse than that in the one-bit
case. This observation implies that good initialization for PR is
more critical than that for the one-bit case when employing the
GEC-SR algorithm.

Next, we consider the evolution trajectory for the decentral-
ized case. Comparing GEC-SR with deGEC-SR, we find that
Modules A and B are identical and that the only difference is
noted in Module C. Thus, the response curves for Modules A
and B in deGEC-SR are identical to those in GEC-SR. Recall
that Module C solves the linear inverse problem. Therefore,
one can expect that the response curve of Module C highly
depends on the ratio between the dimensions of measurements
Ml and unknown signalN , i.e., γl = Ml/N . We show examples
of the response curves with fixed N = 1, 000,M = 4, 000 but
varying Ml = {400, 2000, 4000} in Fig. 11, i.e., the cases with
L = 10, 2, 1, respectively. For the cases without fusion, we
find that the whole response curve of Module C move close to
the left as the measurement dimension decreases. The smaller
the measurement dimensions are, the closer to the left the re-
sponse curve is. As the response curve of Modules A is fixed, the
response curves of Modules C shall intersect at high MSE values
as it is close to the left. This fact implies poor reconstruction
performance when the dimensions of measurements are small.
Therefore, the reconstruction performance of each cluster is
degenerated with the number of clusters. However, if the fusion
center is applied, we find that the response curve of Module C
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Fig. 9. Examples of the evolution trajectory for GEC-SR.

Fig. 10. Examples of response curves of Module A for different nonlinear
functions Q(·).

moves to the right. Specifically, because of the combining formu-
lation (38), the response curve with the combination uniformly
shifts to the right by L times. From the intersections of the
response curves of Modules B and C, we can determine the
degeneration due to decentralization. Given the shapes of the
response curves of Module C (i.e., their shapes are similar at
the intersection region), we can realize that the degeneration is
insignificant as long as signal x becomes sparse. For example,
we find that the degeneration for the case with ρ = 0.1 is more
negligible than that for the case with ρ = 0.5.

E. Performance and Time Complexity

SE can be used to quickly obtain the performance pre-
dictions for deGEC-SR with different clusters because of its
accuracy. The predicted performance provide useful informa-
tion to determine the trade-off between performance and time
complexity. To understand this trade-off, we compare the per-
formance and time complexity with a fixed unknown signal
dimension N = 1, 000, while varying measurement dimensions

Fig. 11. Examples of the response curves of Module C with different number
of decentralization clusters.

Fig. 12. MSEratio versusTMratio for fixed unknown signal dimensionN =
1, 000 with varying measurement dimensions M = {4000, 8000, 16000} and
clusters L. The ovals represent the same number of clusters L = {γ, 2γ, 4γ}.
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M = {4000, 8000, 16000} and clusters L. In particular, we
consider γ = M/N = {4, 8, 16} and L = γ, 2γ, 4γ. Here,
performance is predicted using SE, and time complexity is
determined through computer simulations.

To clearly present the comparisons, we define the time com-
plexity reduction ratio as

TMratio =
TimedeGEC−SR
TimeGEC−SR

. (47)

Fig. 12 compares the performance and time complexity in
terms of performance degeneration andTMratio for ρ = 0.5 and
SNR = 20 dB. We find that for most of the cases, deGEC-SR
leads to minor performance degeneration, while reducing time
complexity by tens to hundreds of times. For the case with
sufficiently large measurement dimensions, that is, sampling rate
γ is large, performance degeneration caused by decentralization
can be ignored.

V. CONCLUSION

We developed a novel decentralized algorithm called deGEC-
SR by leveraging the core framework of GEC-SR. In most cases
of interest, performance degeneration due to decentralization
can be ignored. deGEC-SR offers excellent performance as
GEC-SR and runs tens to hundreds of times faster than GEC-SR.
We derived the theoretical SE for deGEC-SR and demonstrated
its accuracy by using numerical results. With our analysis, we
highlight the following facts about our algorithm. i) A good
initialization is more critical for signal recovery in the phase-less
stage than other nonlinearity when employing the GEC-SR al-
gorithm. ii) Given the shaping of the response curves of Module
C (i.e., their shapes are similar at the intersection region), the
degeneration is ignored as long as the signal becomes sparse.

APPENDIX A
EXPLICIT EXPRESSION OF (43A)

In this appendix, we show the explicit expression of (43a) for
the PR model. For brevity, we omit the cluster index [l], iteration
index (t), and prior/extrinsic index 1/2 throughout the following
derivation.

From Table I, we can obtain the posterior variance
VarPout(y|z){z|μz, vz}, which is given by

VarPout(y|z){z|μz, vz}

=
v2zy

2

(vz + σ2
w)

2

︸ ︷︷ ︸
(a)

+
vzσ

2
w

vz + σ2
w︸ ︷︷ ︸

(b)

− v2zy
2

(vz + σ2
w)

2

⎛

⎝
I1

(
2y|μz |
vz+σ2

w

)

I0

(
2y|μz |
vz+σ2

w

)

⎞

⎠

2

︸ ︷︷ ︸
(c)

.

(48)

Notice that y and μz are random variables. To take the expec-
tation on (48) w.r.t. y and μz , we need their joint distribution
P(y, μz).

In GEC-SR algorithm, z is modeled by its priors (μz, vz). The
orthogonality principle of the LMMSE implies that E{μ∗z(μz −
z)} = 0. Combining this expression and E{|μz − z|2} = vz , we

can obtain the covariance of (z, μz) as [19]
[

Pz Pz − vz

Pz − vz Pz − vz

]

. (49)

With this covariance matrix, then the conditional distribution
of z given μz is NC(z;μz, vz), which agrees with our desired
formula. In particular, the bivariate Gaussian distribution can be
expressed by

P(z, μz) = P(z|μz)P(μz)

= NC(z;μz, vz)NC(μz; 0, Pz − vz). (50)

In the PR model, y is related to z viaPout(y|z). With the Markov
process, we obtain

P(y, μz) =

∫
P(y, z, μz)dz =

∫
P(y|z, μz)P(z, μz)dz

(a)
=

∫
1y≥0 y

∫ 2π

0

NC(ye
jθ; z, σ2

w)dθ

︸ ︷︷ ︸
=Pout(y|z)

NC(z;μz, vz)︸ ︷︷ ︸
=P(z|μz)
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=P(μz)

dz

(b)
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vzσ
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dz

)
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= 1y≥0 y
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0
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(c)
=

2y
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e
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w I0

(
2y|μz|
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w

)

×NC(μz; 0, Pz − vz)1y≥0, (51)

where (a) follows (65), (b) follows the Gaussian production
lemma, and (c) follows (66) to calculate the integral over θ.

Now, we are able to compute the expectation of (48) w.r.t.
(y, μz). As (48) consists of three terms, we address each sepa-
rately. First, we consider the second term. Taking the expectation
of (48)(b) with P(y, μz) given in (51),
∫ ∞
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∫ ∞

0
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,

(52)
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where (a) follows the expression in [45, Eq. 10.43.23] to calcu-
late the integral over y.

Next, we consider the first term. Taking the expectation of
(48)(a) with P(y, μz) given in (51), we obtain

2v2z
(vz + σ2

w)
3

∫ ∞

0
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)

×NC(μz; 0, Pz − vz) dμz dy.

To continue, we use the rectangular-to-polar transformation
μz = uze

jθz (65) and obtain
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where (a) follows (67), (b) follows the expression in (63) to
calculate the integral over uz , and for (c), we change the variable
by letting u = y2.

Next, we consider the third term. Putting (48)(c) and P(y, μz)
together, we obtain
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Applying the rectangular-to-polar transformation μz = uze
jθz ,

the above equation becomes
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where the equality follows (67). Defining

F (a, b, c) =
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and collecting (52)–(54), we finally obtain
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vzσ
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APPENDIX B

In this appendix, we show that the explicit expression of (43f),
as x follows the Gaussian-Bernoulli distribution. For brevity, we
omit the cluster index [l], iteration index (t), and prior/extrinsic
index 1/2 throughout the following derivation.

From line 3 of Table I, we can obtain the posterior variance
VarP(x){x|μx, vx}, which is given by

Z−1x

(∣
∣
∣
∣

μxρ
−1

vx + ρ−1

∣
∣
∣
∣

2

+
vxρ

−1
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)

︸ ︷︷ ︸
(a)

−Z−2x

∣
∣
∣
∣

μxρ
−1

vx + ρ−1

∣
∣
∣
∣

2

︸ ︷︷ ︸
(b)

. (57)

Recalling from (14), the calculation of VarP(x){x|μx, vx} in-
volvesNC(x;μx, vx) and the true prior P(x) (8). Therefore, the
joint distribution of interest is given by

P(x, μx) = P(μx|x)P(x)
= NC(x;μx, vx)

[
(1− ρ)δ(x) + ρNC(x; 0, ρ

−1)
]
.

(58)

Integrating out x, we obtain the marginal distribution

P(μx) = (1− ρ)NC(μx; 0, vx) + ρNC(μx; 0, vx + ρ−1),
(59)

where the second term can be easily obtained by the Gaussian
production lemma.

We address the two terms of (57) separately. First, we consider
the first term. Taking the expectation of (57)(a) withP(μx) given
in (59),
∫
Z−1x

(∣
∣
∣
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|μx|2NC(μx; 0, vx + ρ−1)dμx = 1,

(60)

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 07,2022 at 05:57:22 UTC from IEEE Xplore.  Restrictions apply. 



1498 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

where the first equality can be easy obtained by noticing that
the denominator of Z−1x is identical to P(μx). Next, taking the
expectation of (57)(b) with P(μx) given in (59),

1

(vx + ρ−1)2

×
∫ ∞

−∞

∣
∣μxNC(μx; 0, vx + ρ−1)

∣
∣2

(1− ρ)NC(μx; 0, vx) + ρNC(μx; 0, vx + ρ−1)
dμx

=
1

vx + ρ−1

∫ ∞

0

re−r

ρ+ (1− ρ)(1 + (ρvx)−1)e−
r

ρvx

dr,

(61)

where the equality can be easily obtained by using the
rectangular-to-polar transformation and applying (67). Combin-
ing (60) and (61), we obtain the expression given in (45).

APPENDIX C

In this appendix, we provide useful functions and integrals.
Bessel functions: The modified Bessel function of the first

kind is defined as

In(t) =
1

π

∫ π

0

et cos θ cos(nθ)dθ, (62)

where n is an integral. Using it, we have [45, Eq. 10.43.23]
∫ ∞

0

tn+1In(b t)e
−p2t2dt =

bn

(2p2)n+1 e
b2

4p2 . (63)

Rectangular-to-polar transformation: Considering the condi-
tionally distribute Pout(u|z) = NC(u; z, v), we transform u =
yejθ from rectangular to polar coordinates to obtain [20, (22)]

Pout(y, θ|z) = 1y≥0 1θ∈[0,2π)NC(ye
jθ; z, v) y. (64)

Integrating the unobserved phase θ, we can obtain [20, (23)]

Pout(y|z) = 1y≥0 y
∫ 2π

0

NC(ye
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=
2y

σ2
w

e
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)
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In addition, we find the following integral to be useful
∫ 2π

0

NC(ye
jθ; 0, v) dθ =

∫ 2π

0
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