
5716 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 21, NOVEMBER 1, 2017

On Performance of Sparse Fast Fourier Transform
and Enhancement Algorithm

Gui-Lin Chen, Shang-Ho Tsai, Senior Member, IEEE, and Kai-Jiun Yang

Abstract—Sparse fast Fourier transform (FFT) is a promising
technique that can significantly reduce computational complex-
ity. However, only a handful of research has been conducted on
precisely analyzing the performance of this new scheme. Accurate
theoretical results are important for new techniques to avoid nu-
merous simulations when applying them in various applications.
In this study, we analyze several performance metrics and de-
rive the corresponding closed-form expressions for the sparse FFT
including 1) inter sparse interference due to nonideal window-
ing effects, 2) the probability of sparse elements overlapping, and
3) the recovering rate performance. From the analytical results,
we gain insights and propose a novel mode-mean estimation al-
gorithm for improving the performance. Simulation results are
provided to show the accuracy of the derived results as well as
the performance enhancement. We also show how to determine
parameters to achieve the lowest computational complexity using
these theoretical results.

Index Terms—Sparse fast Fourier transform, sparse signals,
recovering rate, mode-mean estimator.

I. INTRODUCTION

FAST Fourier Transform (FFT) is one of the most impor-
tant techniques in signal processing. The demands for

high-speed large-size FFT are strong and urgent. To name a
few, VDSL2 [1] and DVB-T2 [2] standards with 8k- and 32k-
FFT respectively. The dimension of signal processing for high-
resolution multimedia, such as 4k images or high-definition
audio, also needs to be scaled up for better quality. Meanwhile,
lately, deep learning has replaced high dimensional convolution
by FFT for speed-up in the neural network for extracting fea-
tures [3] and [4]. When the FFT size is large, the computational
complexity grows rapidly, and the computation units may not
be able to complete the calculations in time.

Sparsity is common and inherent in signals such as commu-
nications, audio, image and video data. Recently there has been
extensive research done in compressive sensing to handle sparse
signals [5]–[8]. Several signals are sparse in the frequency do-
main, e.g., see [9]–[12]. To transform such sparse signals to

Manuscript received December 23, 2016; revised April 20, 2017 and August
2, 2017; accepted August 4, 2017. Date of publication August 15, 2017; date
of current version September 5, 2017. The associate editor coordinating the
review of this manuscript and approving it for publication was Dr. Dennis Wei.
This work was supported by the Ministry of Science and Technology, Taiwan
under Grant MOST 105-2221-E-009-033 and Grant MOST 106-2221-E-009-
043. (Corresponding author: Shang-Ho Tsai.)

The authors are with the Department of Electrical Engineering, National
Chiao Tung University, Hsinchu 30010, Taiwan (e-mail: glchen.eed03g@
g2.nctu.edu.tw; shanghot@alumni.usc.edu; kaijiuny.ece98g@g2.nctu.edu.tw).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2017.2740198

the other domain, sparse FFT (SFFT) can be applied to greatly
reduce computations [13]–[20].

The concept of SFFT was mentioned by the researchers in
[13]–[16]. Instead of computing all the elements, the SFFT
exposes new techniques to identify and calculate the sparse
elements. Generally, the SFFT proceeds in three steps [17]:
1) identifying the (frequency) locations of the principal
elements with large magnitude; 2) estimating the coefficients
of these elements in the first step; 3) removing the attribution
of the Fourier result computed by the first two steps from the
original signal. These three steps are repeated until the entire
sparse elements are found. H. Hassanieh et al. modified the
third step by keeping only K largest elements while setting
the others to zeros [15]. Instead of subtracting the original time
domain signal, the complexity is further reduced by subtracting
the reconstructed partial sparsity from the sub-sampled signals,
such that the complexity of the inverse FFT is also minimized
[16]. A different scheme called SFFT-DT, which handles sparse
FFT problems via downsampling the source signal in the time
domain without aliasing the outputs, was proposed in [18] and
[19]. Lately, the SFFT has been applied in image processing to
reduce the complexity and the performance loss: by optimally
permuting the signal, the spectrum collision is effectively
reduced [21]. The property in lattice theory is applied in the
hash-to-bin process so that the permutation is performed in
multi-dimension. In such a case, the peak signal-to-noise ratio
(PSNR) of the 2-D image processing can be improved by
several decibels compared to those with random permutation in
single-dimension. Another application is the noise-robust fast
Fourier aliasing-based sparse transform (R-FFAST) in [22] that
speeds up the acquisition of magnetic resonance (MR) images.

The motivations of this work are as follows: The SFFT is
a novel and promising technology. However to date not much
research has been conducted to derive accurate performance
in closed-form expressions for this new technique. Accurate
performance analyses and closed-form expressions for new
technologies are important because these closed-form ex-
pressions not only provide insights into the designs but also
avoid cumbersome numerical simulations due to the needs
of adjusting various parameters. Although some performance
bounds were derived, e.g., in [14], however, those bounds may
not be sufficiently tight, and thus simulations are still needed in
most applications. For example, one may ask the question what
is the relationship between the computational complexity and
the recovering rate under a specific parameter setting, or the
question what is the parameter setting that achieves the lowest

1053-587X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 25,2022 at 12:41:50 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PERFORMANCE OF SPARSE FAST FOURIER TRANSFORM AND ENHANCEMENT ALGORITHM 5717

computational complexity for a 100% recovering rate? To
answer these questions, accurate analyses are needed. More-
over, we notice that with the aid of signal updating iterations,
e.g., similar concept in [16], the subsampling FFT size for the
algorithm proposed in [15] can be reduced.1 In other words,
the residual sparse elements due to the shorten subsampling
FFT size after the outer loop iterations can be further recovered
with the assistance of the signal updating iterations. As a
result, the overall complexity can be reduced. The question
is how to efficiently determine suitable subsampling FFT size
and the numbers of outer loop and signal updating iterations
for various parameter settings? Again, accurate performance
analyses and closed-form expressions are competent for solving
this question. Furthermore, most of the existing SFFT schemes
use the “median” to estimate the coefficients of the sparse
elements, e.g., see [14], [15], and [16]. The reason should be
to combat the outliers, because the commonly used “mean
estimator” is susceptible to the influence of outliers. However,
we notice that in some cases, especially when the number of
outliers increases, the median estimator can lead to a serious
performance degradation in terms of recovering rate. Hence
some other estimator capable to conquer this issue is desired.

To address these issues, we have done the following contri-
butions: First, we analyze the performance of the SFFT scheme
and derive closed-form expressions. Consequently, one can de-
termine suitable design parameters without conducting numer-
ous simulation results for various cases. For example one can
use these results to determine the subsampling FFT size, win-
dowing specifications, the numbers of outer loop and signal
updating iterations for a given number of sparse elements and a
target recovering rate. Simulation results are provided to verify
the accuracy of the proposed analysis as well as show how to
use these analytical results to determine design parameters in
various situations. It is worth pointing out that the analysis is
derived for arbitrary sparse signals, although in the Examples
and Experiments, the signal that we used are i.i.d. Gaussian
since such signals are more generally used in the applications
with FFT, e.g., image processing, machine learning, etc.

Moreover, we propose a mode-mean estimator to overcome
the performance loss using the conventional median estima-
tor. This proposed estimator is motivated by the observation
that when a specific sparse element does not overlap with other
sparse elements after subsampling, its reconstructed results from
individual iterations have a high probability to be nearly identi-
cal. The proposed estimator finds the mode of the reconstructed
results from individual iterations. Those reconstructed results
that equal to the mode are further averaged to obtain the FFT out-
put. Simulation results show that the proposed mode-mean esti-
mator outperforms the conventional median estimator in terms
of estimation error and overall recovering rate.

Furthermore, using the above findings, we suggest the fol-
lowing scheme: The SFFT applies the outer loop iterations in
[15] while the median estimator can be replaced by the proposed
mode-mean estimator. Signal updating iterations, like those in

1Note that in [16], the algorithms in the outer loop iterations are not the same
as those in [15]. Also, there is no signal updating iteration used in [15].

Fig. 1. An SFFT system block diagram with outer loop and signal updating
iterations.

[16], can be used to reduce the subsampling FFT size and thus
it decreases the overall complexity. The design parameters such
as the subsampling FFT size, the numbers of outer loop and
signal updating iterations can be efficiently determined by the
proposed analytical results.

The rest of this paper is organized as follow: In Section II,
the system model of the SFFT is introduced. In addition, the
proposed mode-mean estimation is introduced and the induced
inter sparse interference is analyzed here. In Section III, this new
proposed SFFT is analyzed, and closed-form approximations are
derived for the recovering rate performance. Simulation results
are provided in Section IV. Conclusion remarks are given in
Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The block diagram of the suggested SFFT system is shown in
Fig. 1. The input signal x ∈ CN×1 is K-sparse in the frequency
domain, where N is a power-of-2 integer. Now let us introduce
the main steps of the SFFT, including outer loop iterations and
signal updating iterations. The outer loop iterations contain sig-
nal permutation, windowing, subsampled FFT and inner loop
iterations.

A. Permutation

The permutation function is defined as fT (n) = (βT n)mod N

in the time domain and fF (k) = (βF k)mod N in the fre-
quency domain, where βT has a uniform distribution in
{1, 3, 5, . . . , N − 1}. The index βF after the permutation in
the frequency domain can be obtained by (βF βT)mod N = 1.
Because both βT and βF are one-to-one and onto, βF also has
uniform distribution in {1, 3, 5, . . . , N − 1}.

Let x be an N × 1 complex signal in the time domain, and
its DFT X is an N × 1 K− sparse complex signal. Then it can
be shown that permutating x by x′[n] = x [fT (n)], the DFT of
the permuted signal can be obtained by X ′[k] = X [fF (k)].

B. Windowing

A Gaussian window function was used in [16]. Although
the Gaussian window function is good in stopband because its
magnitude decreases rapidly than the other window functions,
its window length is longer than Chebyshev window function
in the time domain. Also, we would like the passband region to

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 25,2022 at 12:41:50 UTC from IEEE Xplore. Restrictions apply.

5718 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 21, NOVEMBER 1, 2017

be as flat as possible and the transition band be as sharp as it
can be. Intuitively, this can be achieved by using a rectangular
function. Hence, we adopt the Chebyshev window function as
the standard window and convolve it with a rectangular function
to attain the properties of flat passband and short window length.
The window function is redefined as: g ∈ RL×1 is said to be
a (εp , εs , δs , L) flat window function if its DFT G ∈ CN×1

satisfies
⎧
⎨

⎩

1 − δs ≤
∣
∣
∣G[k]

∣
∣
∣ ≤ 1 + δs, k ∈ [−εpN, εpN]

∣
∣
∣G[k]

∣
∣
∣ < δs, k /∈ [−εsN, εsN].

C. Subsampled FFT

Let y ∈ CN ×1 be a complex signal in the time domain and
Y ∈ CN ×1 be its DFT in the frequency domain. Instead of using
N -point FFT, in the sparse FFT, only B-point FFT is conducted,
where N

B is called the subsampling factor. It is mentioned in [24]
that downsampling in the frequency domain leads to time alias-
ing in the time domain. More specifically, let V be a downsam-
pled vector of Y via V [k] = Y [N

B k]. Then, the resulting time

aliasing effect can be expressed as v[n] =
∑N

B −1
j=0 y[n + Bj].

This is similar to downsampling a signal in the time domain
results in aliasing in the frequency domain.

D. Inner Loop Iteration

There are two kinds of iterations in the inner loop. One is
location loop iteration to determine index locations of sparse
signals, and the other is estimation loop iteration to reconstruct
amplitude. Each iteration in both loops contains permutation,
windowing, and subsampled FFT. The location and estimation
loops are introduced separately as follows:

1) Location Loop: The location loop finds dK candidate
elements that have the largest magnitude from V, where d ≥ 1
and its purpose is to keep more candidates for finding the true
K-sparse locations, and this can be determined off-line.

Let us describe how to find the locations. Let H ∈ RB×1 be
a vector obtained by setting the dK largest elements of V to
1 and the other elements to 0. Let U′ be a signal obtained by
upsampling H by a factor of N

B using the following equations:

U ′[k] = H

[(

round

(
N

B
k

))

mod N

]

, k = 0, 1, . . . , N − 1.

That is, in the upsampling operation, we assign the same value
to the neighbor elements for reflecting the window effect. Then
the reconstructed signal can be obtained by depermuting U′ as
follows:

U [k] = U ′[(βT k)mod N], k = 0, 1, . . . , N − 1.

A 0N ×1 score table T is prepared in advance. At each itera-
tion, the score table plus one at location k, i.e., T [k] = T [k] + 1,
where k corresponds to the dK N

B non-zero elements of U [k].
After several iterations, one picks up the locations with the high-
est scores and regards them as the candidate indices of the sparse
signal. We define J as the index set of the candidate indices of
the sparse signal.

2) Estimation Loop: After determining the candidate loca-
tions of a sparse signal, namely J , estimation loop iterations
are conducted to reconstruct the amplitudes for these locations.
In the subsampled FFT, because windowing in the time do-
main is equivalent to convolving in the frequency domain, i.e.,
Y [k] = G[k] ∗ X ′[k], the subsampled FFT signal can be ex-
pressed as

V [k] = Y

[
N

B
k

]

=
N −1∑

m ′=0

G

[(
N

B
k − m′

)

mod N

]

X ′[m′]

=
N −1∑

m=0

G[
(

N

B
k − fF (m)

)

mod N

]X[m], (1)

where k = 0, 1, . . . , B − 1. Since the sparse signal consists of
only K dominant elements, (1) becomes

V [k] =
K−1∑

j=0

G

[(
N

B
k − fF (Ii)

)

mod N

]

X[Ii], (2)

where Ii is used to emphasize that this is a candidate index of the
sparse signal. Because we have candidate locations Ii ∈ J from
the location loop, by letting k = h(Ii) = round

(
fF (Ii) B

N

)
,

one can distinguish between the desired signal and the interfer-
ence. More specifically, rewriting (2) leads to

V [h(Ii)] = G[o(Ii)]X[Ii] +
K−1∑

j=0,j �=i

G[d(Ii, Ij)]X[Ij], (3)

where

o(Ii) =
(

h(Ii)
N

B
− fF (Ii)

)

mod N

,

and

d(Ii, Ij) =
(

h(Ii)
N

B
− fF (Ij)

)

mod N

. (4)

Since the window function G is known in advance, the value of
G[o(Ii)] is available. Dividing both sides by G[o(Ii)], one can
equalize the signal by

X̃[Ii] =
G[o(Ii)]X[Ii] +

∑K−1
j=0,j �=i G[d(Ii, Ij)]X[Ij]

G[o(Ii)]

= X[Ii]
︸ ︷︷ ︸

desired signal

+

∑K−1
j=0,j �=i G[d(Ii, Ij)]X[Ij]

G[o(Ii)]
︸ ︷︷ ︸

inter sparse interference

. (5)

To combat the inter sparse interference in the equalized signal
X̃[Ii], several iterations shall be conducted for estimating accu-
rate results. For this, the conventional estimation is introduced
first [15]. Then we introduce the proposed new estimation to
improve the performance. For representation purpose, we let
X̃(j) [Ii] be the equalized value with index Ii in the jth outer
loop iteration.

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 25,2022 at 12:41:50 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PERFORMANCE OF SPARSE FAST FOURIER TRANSFORM AND ENHANCEMENT ALGORITHM 5719

Conventional Estimator: In practice the number of outer loop
iterations is limited, denoted by Router . Thus, one has the fol-
lowing observations:

X̃[Ii] =
[
X̃(1) [Ii], X̃(2) [Ii], · · · , X̃(Ro u t e r) [Ii]

]T
, Ii ∈ J .

Due to the outliers, which are observations far from other ob-
servations, using the mean estimator is particularly susceptible
to the influence of outliers. This is more pronounced when there
are extreme values. In the algorithm proposed in [15], the me-
dian estimator was used, which performs better than the mean
estimator when there are outliers in the observations. However,
the median estimator can degrade performance in some cases.
For instance, let Router = 10, and there are 10 observations for
each candidate index. An index has the following observations:
X̃[Ii] = (3, 3, 3, 3, 4, 5, 6, 7, 8, 8)T . In this example, the mean
value is 5 and the median is 4.5. To overcome this, we notice the
fact that most of the equalized values in individual iterations are
very close. In the above example, the mode is 3. To utilize this
finding, we propose to use a mode-mean estimator described as
follows:

Proposed Mode-Mean Estimator: We notice that when the
sparse signal indeed has a non-zero element in an index, the
probability that this index has large equalized values after indi-
vidual inner loop iterations is high; more importantly, the equal-
ized values for individual iterations are almost the same, except
for the outliers. Hence, in the proposed algorithm, we use a
mode-mean method to estimate the results. More precisely, first
we take mode operation, which identifies the candidate indices
with close equalized values. For instance, we define a thresh-
old M and an error deviation σ. If the number of outer loop
iterations is Router , we identify an index as a sparse location
if greater or equal to M of these Router equalized values have
differences smaller than 10�log 4σ	. Then these close values are
averaged to obtain the reconstructed result X̌[Ii], which is called
mean operation. The proposed algorithm is summarized in
Algorithm 1.

Example 1. Proposed mode-mean estimator in Algorithm 1:
Let Router = 10, and hence we have 10 equalized values
for each candidate index. An example is shown in Ta-
ble I. Let σ = 4.097 × 10−8 , γ = −6, M = 3. The corre-
sponding rounded values are shown in the second column
of this table. One can see that there are seven identical
rounded values (boldfaced), which are greater than M = 3
and hence Ii is regarded as a sparse index. The mode value
is 0.551155 + 0.382201j. The reconstructed value for this in-
dex is 0.551155421 + 0.382201418j, which is very close to the
correct result 0.551155422 + 0.382201418j.

Reasonable values for σ, M and Router and their meaning
will be explained and become clear later in next section. The
value of σ is related to inter sparse interference, and it is intro-
duced in the following proposition:

Proposition 1: Assume that the sparse signal has i.i.d. sparse
elements with zero mean and variance σ2

x . Then the variance of
inter sparse interference defined by

σ2 = Var

{∑K−1
j=0,j �=i G[d(Ii, Ij)]X[Ij]

G[o(Ii)]

}

, (6)

Algorithm 1: Proposed mode-mean estimator.
Input: candidate index set J ; equalized values in Router

individual iterations X̃(�) [Ii]; predetermined M and σ;
Output: reconstructed signal X̌[Ii];
1: for Ii ∈ J do
2: Round each equalized value X̃(�) [Ii] to decimal

place γ = �log 4σ	;
3: Obtain the mode value λ that most frequently occurs

as a measure;
4: Keep and count the equalized values X̃(�) [Ii] that

satisfies the condition∣
∣
∣λ − X̃(�) [Ii]

∣
∣
∣ ≤ 10γ , � = 1, . . . , Router ;

5: If the count number is greater or equal to M , Ii is
regarded as a sparse index; reconstructed signal
X̌[Ii] is obtained by averaging the kept values in
Step 4.

6: end for

TABLE I
RECONSTRUCTING SPARSE SIGNAL USING ALGORITHM 1

can be shown to be

σ2 = (K − 1)σ2
xE

{(
G[d(Ii, Ij)]

)2
}

E

{(
1

G[o(Ii)]

)2
}

.

(7)

Proof: Please see Appendix A. �
From Proposition 1, since the window function is designed

in advance, both G[o(Ii)] and |G[d(Ii, Ij)]| are known. More
specifically, we know that |G[d(Ii , Ij)]| < δs, for d(Ii, Ij) /∈
[−εsN, εsN]. Note that δs is the maximum value of the stop
band ripple, and the actual value of the stop band ripple shall be
lower than δs . Hence, we can obtain an upper bound value for
σ2 by letting E{(G[d(Ii, Ij)])2} = δ as

σ2 ≤ δ(K − 1)σ2
xE

{(
1

G[o(Ii)]

)2
}

. (8)

Example 2. Inter sparse interference: Theoretical and sim-
ulation results: In this example, we show the accuracy of the
theoretical result in (8). Let δs = 10−8 . The sparse elements are
assumed to be i.i.d. Gaussian with zero mean and unit variance.
Fig. 2 shows the deviation σ as a function of K for various (orig-
inal) FFT size N . Observe that the derived upper bound matches
the simulation result quite well. If high accuracy is needed, one
can use the theoretical result in (7).

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 25,2022 at 12:41:50 UTC from IEEE Xplore. Restrictions apply.

5720 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 21, NOVEMBER 1, 2017

Fig. 2. The standard deviation σ of inter sparse interference for different
values of N .

Fig. 3. Distribution of inter sparse interference.

When the value of K is large, the inter sparse interference
is asymptotically Gaussian distribution. The following example
demonstrates this approximation.

Example 3. Gaussian approximation of inter sparse interfer-
ence: Let N = 215 , K = 128, B = 4K and the window func-
tion is (8.85 × 10−4 , 0.0039, 2 × 10−9 , 7723). Fig. 3 shows the
inter sparse interference and a Gaussian distribution with zero
mean and standard deviation σ = 1.265 × 10−8 . The two results
are close thanks to the Law of Large Number.

The Gaussian approximation of the inter sparse interfer-
ence can be used to determine the rounding decimal place in
Algorithm 1. More specifically, since the inter sparse interfer-
ence is asymptotically Gaussian with zero mean, and we have
already derived its standard deviation σ in Proposition 1, the
complete statistic is known. One can use this statistic to infer

that the dynamic range of the equalized values from individual
iterations. As mentioned before in Section II-D2, we set the dy-
namic range to be, e.g., 4σ, to obtain the mode of the proposed
mode-mean estimator. In this case, the equalized values of a
specific sparse element without overlapping with other sparse
elements in individual iterations shall be close. The probability
to have a difference greater than, e.g., say 4σ, shall be smaller
than 10−3 .

E. Signal Updating Iterations

When the subsampled FFT size B approaches the value of K,
for instance, B = K or B = 2K, the recovering (reconstruct-
ing) performance degrades. Signal updating iterations can be
conducted to overcome this. There is a tradeoff between com-
plexity and performance when different numbers of outer loop
and signal updating iterations are applied. That is, the main
complexity lies on the FFT. When a small value of B is used,
the FFT complexity is low while its recovering performance
may degrade. However, if updating the signal are added to im-
prove the performance, i.e., each updating the signal subtracts
part of the reconstructed sparse elements obtained from the pre-
vious iteration, the overall complexity can be lower than that
obtained by using a large value of B but without updating the
signal. Hence, if one fixes the recovering rate to be (nearly)
100%, there seems to have an optimal setting for the sparse
FFT parameters that leads to the smallest complexity. The key
to solve this problem relies on precise theoretical analysis of
the recovering rate, which is a function of several parameters
including SNR, the value of K, subsampled FFT size B, and
original FFT size N , etc. To address this question, we need to
derive closed-form solutions for the recovering rate, and this
will be introduced in Section III.

Now let us describe how signal updating iterations work.
The signal updating iterations subtract the identified sparse
elements from previous iterations. Let r = 1, 2, · · · , Rupdate ,
where Rupdate is the number of signal updating iterations. Re-
ferring to Fig. 1, the input signal after the rth updating iterations
can be expressed as [16].

Z[k] = V [k] − Vupdate [k], k = 0, 1, . . . , B − 1, (9)

where Vupdate [k], from (3), can be calculated by

Vupdate [h(Ii)] =
r∑

l=1

Kr −1∑

j=0

G[d(Ii, Ij)]X̂[Ij], (10)

and K =
∑Ru p d a t e

r=1 Kr with Kr is the number of sparse ele-
ments that can be identified at the rth updating iteration. After
all updating iterations are done, the reconstructed signal X̂ is
obtained by combining the reconstructed sparse elements from
all iterations.

F. Performance Criteria

To make the sparse FFT more general, assuming that the input
signal is i.i.d. complex Gaussian. In this case, the recovering rate
for complex Gaussian signals shall be defined first. In this study,
we define the sparse error and recovering rate as

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 25,2022 at 12:41:50 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PERFORMANCE OF SPARSE FAST FOURIER TRANSFORM AND ENHANCEMENT ALGORITHM 5721

Algorithm 2: Suggested SFFT with inner loop, outer loop,
and signal updating iterations.

Input: a sparse signal x; number of frequencies K; number
largest magnitude elements in location loops, d; number
iterations in updating the signal, Rupdate ; number
iterations in location loops, R�oc ; number iterations
in estimated loops, Router ; flat window function g and
G; subsampled FFT size, B;

Output: Estimated result X̂.
1: Initialization: X̂ = 0.
2: for r = 1 : Rupdate do % Signal updating iteration
3: for � = 1 : Router do % Outer loop
4: Generate a uniform random number, βT from

{1, 3, 5, . . . , N − 1} and find βF .
5: Permute signals with βT using Section II-A.
6: Window signals using Section II-B.
7: Subsampled FFT and obtain Z using Section II-C.
8: Store βT , βF , Z from all inner loop iterations.
9: if � ≤ R�oc then % Location loop

10: Make a score table.
11: end if
12: end for
13: J = find candidate sparse index that is equal or

more than score threshold in score table.
14: for � = 1 : Router do % Estimation loop
15: reconstrtuct X̃(�) [Ii], Ii ∈ J .
16: end for
17: Obtain the reconstructed value X̌(r) in the rth

iteration using Algorithm 1;
18: X̂ = X̂ + X̌(r) . % Combine sparse elements
19: Take largest K magnitudes of X̂ and set the

remainders to zeros.
20: end for

Sparse Error =

⎧
⎨

⎩

1,
∣
∣
∣X̂[i] − X[i]

∣
∣
∣ > Vth ,

0,
∣
∣
∣X̂[i] − X[i]

∣
∣
∣ ≤ Vth ,

Recovering Rate =
1
K

K−1∑

i=0

Sparse Error, (11)

where Vth can be determined according to the performance
requirements. It is worth mentioning that the derived results are
valid for arbitrary sparse signal including lattice points such
as QAM. Taking QAM for instance, one can regard (11) as
symbol error rate by setting Vth be a half of the minimum
distance between two lattice points.

Another performance metric is the average L1 error of the K
sparse, which was defined in [15]:

Average L1 Error =
1
K

N −1∑

i=0

∣
∣
∣X̂[i] − X[i]

∣
∣
∣. (12)

The suggested sparse FFT using the proposed mode-mean
estimator is summarized in Algorithm 2. Note that in this sug-
gested sparse FFT, the method for the inner loop iterations is

the same as that in [15] except that the proposed mode-mean
estimator in Algorithm 1 is applied; while the concept to use
signal updating iterations is inspired by [16]. Note that there is
no signal updating iteration in [15], and the outer loop iterations
used in [16] are different from those in [15].

Moreover, in this suggested scheme, location loop and esti-
mation loop iterations have common function blocks, i.e., per-
mutation, windowing and subsampled FFT. Thus the results
from these two iterations can be shared by each other to reduce
iterations. That is, we can set Router = Restimation ≥ R�oc .

III. PERFORMANCE ANALYSIS

In this section, the recovering rate performance of the pro-
posed scheme is analyzed. The following two lemmas introduce
how the sparse indices behave after subsampling in the fre-
quency domain and help in deriving the recovering rate.

Lemma 1: If the index Ii has a uniform distribution in
[0, 1, 2, . . . , N − 1] and βF defined in Section II-A has a uni-
form distribution in [1, 3, 5, . . . , N − 1] , where N is with power
of 2, then the permuted index Ii ′ obtained by Ii ′ = fF (Ii) =
(βF Ii)mod N also has a uniform distribution in [1, 2, 3, . . . ,
N − 1].

Proof: See [23] �
Lemma 2: Let hF (Ii) = round

(
fF (Ii) B

N

)
be a function

that reflects signal permutation and subsampling of an index
Ii , where B is the number of resulting samples after subsam-
pling. If Ii has a uniform distribution in [0, 1, 2, . . . , N − 1],
then hF (Ii) has a uniform distribution in [0, 1, 2, . . . , B − 1]
with probability 1

B .
Proof: See Appendix B. �
We discuss the recovering rates for ideal and practical window

functions respectively in the following two subsections:

A. Recovering Rate: Ideal Rectangular Window

Let us discuss ideal window function first, i.e., ideal rectan-
gular shape in the frequency domain. Let Ii be a sparse index,
b be an index in {0, 1, . . . , B − 1} in the subsampled FFT sam-
ples, and hF (Ii) be the function defined in Lemma 2. A sparse
element cannot be recovered (or reconstructed) when it overlaps
with other sparse elements after windowing and subsampling.
That is, any two sparse elements overlap when the following
conditions hold:

d(Ii, Ij) <
N

2B
or d(Ii, Ij) > N − N

2B
, (13)

where d(Ii, Ij) is defined in (4). Because the ideal window has
width N

B , sparse elements do not overlap before subsampling
if their distances are larger than N

B . That is to say, two sparse
elements overlap after subsampling when

hF (Ii) = hF (Ij). (14)

The following two lemmas describe the probability of over-
lapping among sparse elements.

Lemma 3: In an ideal rectangular window function with
width N

B in the frequency domain, the probability that a spe-
cific sparse element does not overlap with other sparse elements

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 25,2022 at 12:41:50 UTC from IEEE Xplore. Restrictions apply.

5722 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 21, NOVEMBER 1, 2017

in one iteration can be expressed as

p =
(

1 − 1
B

)K−1

. (15)

In other words, the probability that a specific sparse element
overlaps with other sparse elements in one iteration is 1 − p.

Proof: See Appendix C. �
Now we discuss how to derive the recovering rate perfor-

mance. As mentioned in the previous section, we use the mode-
mean estimator to recover the FFT result. Recall that this method
conducts Router iterations in the estimation loop, and averages
the equalized samples whose rounded values are equal to the
mode value as the reconstructed FFT result. If the number of
equalized samples used in averaging is greater or equal to M ,
we identify it a sparse element.

That is, referring to Table I, we assume that: if a sparse
element indeed appears in a frequency index Ii , the probability
that several of the rounded values from the Router iterations are
the same is very high. On the other hand, if there is no sparse
element in a frequency index, it is very unlikely that the rounded
values have the same result.

We further assume that if a specific sparse element does not
overlap with other sparse elements, this sparse element should
be able to be correctly reconstructed. If the above assumptions
hold, the non-overlapping probability p in Lemma 3 can be
regarded as the recovering probability in one iteration.

The assumptions are generally true. Although there are two
situations that may violate the assumptions, the violations can
be avoided as explained below: The first violation occurs when
the window function is not ideal. In this case, the stop band
ripple δs can affect the reconstructed values. As we have derived
the variance of the inter sparse interference in Propositions 1,
we know how to choose the rounding decimal place to avoid
this violation. For instance, referring to Example 3, the famous
4σ theorem tells us that the rounded values have a probability
less than 10−3 (this can be regarded as violation probability)
to have differences larger than 4σ. This gives us an important
reference to determine which decimal place to round. One can
avoid this violation by adjusting the rounding decimal place
such that this violation probability is in a negligible level. As
we see in Example 2, the standard deviation σ is smaller than
10−8 for all parameter settings in this example. In this case,
setting 8σ or 16σ to have negligible violation probability is not
a problem.

This violation can also be avoided by setting M . Theoretically
speaking, one may identify an element is indeed a sparse element
if greater than or equal to M = 2 of its rounded values from
Router iterations are the same. To avoid the violation, one can
simply set M = 3 instead of 2. The simulation results show that
although M = 2 may not be able to avoid this violation in some
cases, setting M = 3 can nearly avoid this violation in most
cases.

The second violation occurs when the window function is
ideal, where some overlapped sparse elements from different
iterations somehow have the same result, though this probabil-
ity is very small. This happens more often when the number K

TABLE II
SPECIFY FOR PROP. 2

of sparse elements is small. Taking two sparse elements for in-
stance, if these two sparse overlap in two iterations, the rounded
values for any one of these sparse elements in the two iterations
are identical, because there is no inter sparse interference. In
this case, the proposed algorithm may mistakenly regard the
samples corresponding to the overlapped region (before subsam-
pling) as the candidates of sparse elements, but actually these
identical results are caused by overlapped sparse elements. The
same situation applies to multiple sparse elements. Fortunately,
when K increases, especially in the interested range of sparse
FFT applications, the violation probability becomes very small.
Lemma 4 describes this second violation probability.

Lemma 4: In an ideal window function, there may be some
overlapped sparse elements from different iterations somehow
have the same result. This phenomenon is more pronounced
when the number K of sparse elements is small. Let pi denotes
the probability that exact i sparse elements overlap; i.e., for
i = 1 there is no overlap, for i = 2 two sparse elements overlap,
and so on. Then pi can be shown to be

pi =
(

1
B

)i−1 (

1 − 1
B

)K−i

, (16)

and the number of events with this probability is
(
K−1
i−1

)
.

Proof: See Appendix D. �
From the Binomial theorem, the number of total events is

2K−1 .
Example 4. Overlapping events: Let us give an example to

explain the overlapping events and probabilities in Lemma 4. Let
K = 4, and the permuted sparse four indices be i′, j′, k′, and �′.
From Lemma 4, there are totally 24−1 events shown in Table II.
Let Router = 4, each event may occur or not. For instance, one
realization can be x1,1 = x2,1 = x2,3 = x4,1 = 1 and x2,2 =
x3,1 = x3,2 = x3,3 = 0, where

∑
i

∑
j xi,j = Router = 4.

Using these results, we have the following proposition for
recovering rate performance.

Proposition 2: The recovering rate defined in (11) can be
approximated by

S =
Ro u t e r∑

α=M

Sα, (17)

where Sα is given by

Sα = Pr
[
(x1,1 = α) ∩ (x2,1 < α) ∩ . . . ∩ (xK,1 < α)

]
,
(18)

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 25,2022 at 12:41:50 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PERFORMANCE OF SPARSE FAST FOURIER TRANSFORM AND ENHANCEMENT ALGORITHM 5723

and (18) can be calculated via

Pr
[∩K

i=1 ∩(K −1
i−1)

j=1 (xi,j = ti,j)
]

=
Router !

∏K
i=1
∏(K −1

i−1)
j=1 ti,j !

K∏

i=1

(K −1
i−1)
∏

j=1

p
ti , j

i . (19)

Proof: See Appendix E. �
When K increases, the computational complexity for (18)

increases rapidly. We notice that when K is sufficiently large,
ti,j is small and may be ignored for i > 2. Thus we can further
approximate the recovering rate in the following proposition.

Proposition 3: When the value of K is sufficiently large, the
recovering rate defined in (11) can be approximated by (17), but
now Sα can be further approximated by

Sα =
(

Router

M

)

pM (1 − p)Ro u t e r −M , (20)

and p is defined in (15).
Proof: See Appendix F. �

B. Recovering Rate: Practical Window

For practical window function, the effects of transition band
and stop band ripples shall be considered. Practical flat win-
dow function is defined as (εp , εs , δs , L) in Section II-B. Sparse
elements after windowing in practical window overlap more of-
ten than in ideal window due to the transition band. Thus the
overlapping condition for the sparse elements is modified as

d(Ii, Ij) ≤ εsN or d(Ii, Ij) ≥ N(1 − εs), (21)

where d(Ii, Ij) is defined in (4).
In a practical window function, the overlapping condition in

(14) no longer holds. Hence, we need the following two lemmas
for obtaining the recovering rate.

Lemma 5: Let Ii and Ij be two different sparse indices that
have a uniform distribution in [0, 1, 2, · · · , N − 1]. Then the
distance function d(Ii, Ij) defined in (21) also has the uniform
distribution in [0, 1, 2, · · · , N − 1].

Proof: See Appendix G. �
Lemma 6: In a (ωp, ωs, δs , L) practical window function, the

probability that a specific sparse element does not overlap with
other sparse elements in one iteration can be expressed as

p = (1 − 2εs)
K−1 . (22)

Proof: See Appendix H. �
Using Lemmas 5–6, and previous results in Proposition 3, we

have the recovering rate for practical window functions summa-
rized in the following proposition.

Proposition 4: Given a (εp , εs , δs , L) practical window func-
tion. Let all the parameters remains the same as those in Propo-
sition 3. Then the probability that M of the Router iterations
have the same value can be expressed as in (20), where now p
shall be from (22). The recovering rate defined in (11) can again
be approximated by (17).

C. Signal Updating Iterations and Recovering Rate

Having the recovering rate for the outer loop iterations, the
recovering rate for signal updating iterations can then be intro-
duced in the following proposition.

Proposition 5: Given a (εp , εs , δs , L) practical window func-
tion. Let the number of signal updating iterations be Rupdate ,
and let all the parameters remains the same as those in Propo-
sition 3. The recovering rate defined in (12) with the outer loop
iterations can be approximated by

SRu p d a t e
= 1 −

Ru p d a t e∏

r=1

(1 − Sr), (23)

where

Sr =
Ro u t e r∑

α=M

(
Router

α

)

pα
r (1 − pr)Ro u t e r −α ,

pr = (1 − 2εs)
(1−Sr −1)K−1 .

For the first updating iteration, set p1 = (1 − 2εs)
K−1 .

Note that when (1 − Sr−1)K − 1 < 0, and thus pr > 1, it
implies that the sparse element can be perfectly reconstructed
at this updating iteration. In this case, we set pr = 1 so that this
position can be functional well.

IV. SIMULATION RESULTS

Simulation results are provided to 1) demonstrate the accu-
racy of the derived analytical results, and 2) compare the per-
formance of the proposed algorithm and the scheme in [15].
The input signal is complex Gaussian with zero mean and unit
variance in the experiments. Practical window is applied unless
specifically mentioned. The window function is designed by
setting Bcst loc = Bcst est and δ = 10−8 , see [15].

Experiment 1. Performance comparisons of conventional
median and proposed mode-mean estimators: In this experi-
ment, the proposed mode-mean estimator in Algorithm 1 is
compared with the conventional median estimator in [15]. Let-
ting N = 214 and Router = 20, the mean square errors as func-
tions of different values of B/K for these two estimators are
shown in Fig. 4. From the figure, the proposed estimator out-
performs the median estimator in the interested values of B/K
for M = 2 and M = 3. This result is not surprising because
the proposed estimator finds the mode and thus can handle the
outliers more robustly than the median estimator, whose perfor-
mance is usually dominated by the accuracy of the location loop
iterations.

Experiment 2. Performance comparison of conventional and
proposed schemes: In this example, we compare the perfor-
mance of the sFFT 1.0 [15] and the proposed schemes in terms
of the recovering rate and the average L1 error defined in (11)
and (12), respectively. The parameter setting is as follows: Let
K = 16. The number of iterations for location loop is R�oc = 7
and that for estimation loops is Router = 14.

Fig. 5 shows the recovering rate as a function of N . Fig. 5 (b)
is the zoom-in version of Fig. 5 (a). Solid and dashed curves
are respectively for the proposed and the sFFT 1.0 schemes. We

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 25,2022 at 12:41:50 UTC from IEEE Xplore. Restrictions apply.

5724 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 21, NOVEMBER 1, 2017

Fig. 4. MSE performance comparison between the conventional median esti-
mator and the proposed mode-mean estimator.

Fig. 5. Recovering rate as a function of N .

observe from these two figures that the proposed scheme has
better recovering rate than that of the sFFT 1.0 scheme both for
B = K and B = 4K. Also, from Fig. 5 (b), the performance
for B = K with the signal updating iterations approaches that
for B = 4K without updating iterations, in this example, when
N = 16384 the recovering rate for B = K with three signal
updating iterations is near the same as that for B = 4K. This
result shows that with the aid of updating iterations, one can use
a smaller size subsampled FFT, i.e., B = K in this example,
to achieve comparable performance as that obtained by using a
larger subsampled FFT size B = 4K.

The average L1 error as a function of N is shown in
Fig. 6. Again, the proposed scheme outperforms the sFFT
1.0 scheme for B = K, B = 2K and B = 4K. Moreover, it
is worth emphasizing that the proposed scheme with B = K
and Rupdate = 3 can outperform the sFFT 1.0 scheme with
B = 4K.

Fig. 6. Average L1 error as a function of N .

Fig. 7. The probability that a specific sparse element does not overlap with
other sparse elements in one iteration.

Experiment 3. Theoretical and simulation results for recov-
ering rate: In this experiment, we show the accuracy of the
derived analytical results in Lemma 3 and Propositions 2–4.
The number of iterations in the estimation loop is Router = 10.

Let us discuss ideal window first. As discussed in Lemma 3,
the probability that a specific sparse element does not overlap
with other sparse elements in one iteration has the probability p
given in (15). Fig. 7 shows the analytical and simulation results
for p as a function of B/K for different values of K. The two
results match quite well.

As discussed in Proposition 3, when an element has its
rounded values be identical for more than M times, we identify
this as a sparse element and assume that it can be recovered.
This corresponding probability is expressed in (20).

The corresponding simulation results and analytical results
are shown in Figs. 8 and 9 for K = 4 and 64, respectively.

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 25,2022 at 12:41:50 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PERFORMANCE OF SPARSE FAST FOURIER TRANSFORM AND ENHANCEMENT ALGORITHM 5725

Fig. 8. Probability of the number m of occurrences that the recovered values
of a specific sparse satisfy (20) in the 10 iterations: K = 4.

Fig. 9. Probability of the number m of occurrences that the recovered values
of a specific sparse satisfy (20) in the 10 iterations: K = 64.

Observed from these three figures, in general the theoretical
results match to the simulation results closely. The theoretical
results in Proposition 3 are more accurate for a large value
of K than smaller one. For instance, the theoretical results
with K = 4 and when B = K in Fig. 8 have some approxi-
mation error. This is reasonable because we have explained in
Section III-A that when K is small, sometimes the overlapping
sparse elements may happen to produce identical values in dif-
ferent iterations when ideal windowing is applied. Fortunately,
the corresponding probability decreases as K increase. Thus the
derived results become more accurate as K increases.

For a small value of K, the computational complexity is not
an issue, using Proposition 2 leads to a more accurate approx-
imation than using Proposition 3. From Fig. 8, we see that for
a small value of K the analytical results using Proposition 2
indeed approximate better than that using Proposition 3.

Fig. 10. Recovering rate as a function of B/K with K = 16: ideal windows.

Fig. 11. Recovering rate as a function of B/K with K = 64 ideal windows.

In Figs. 10 and 11, we show the recovering rate comparison
between the analytical result in (17) and true recovering rate
from simulations. We have the following observations: first,
setting M ≥ 3 in (17), the analytical results match the simu-
lation results well. Moreover, comparing these two figures, the
theoretical results are more accurate for a larger value of K than
a smaller one due to same reason explained above. In general,
the original FFT size N is very large (more than 213 according to
[15]–[19]). Hence, the interested number K of sparse elements
is usually large as well. In this case, the derived recovering rate
in Proposition 3 is generally accurate. Nevertheless, as shown
in the red circled curve in Figs. 10, if the computation is not
an issue, the theoretical result in Proposition 2 can approximate
the simulation result more accurately than Proposition 3.

Next, let us show the results for practical window functions. In
Figs. 12 and 13, the comparison of the recovering rate between
the analytical result in Proposition 4 and the simulation result
are provided. Again the two results are quite close, and similar
observations obtained in ideal window functions also appear in

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 25,2022 at 12:41:50 UTC from IEEE Xplore. Restrictions apply.

5726 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 21, NOVEMBER 1, 2017

Fig. 12. Recovering rate as a function of B/K with K = 16: practical
windows.

Fig. 13. Recovering rate as a function of B/K with K = 64: practical
windows.

practical window function. All these results show the accuracy
of the analytical approximations.

Experiment 4. Performance with the aid of signal updating
iterations: We show how the performance is improved via signal
updating and verify the closed-form expression in Proposition 5.

The theoretical results are obtained by letting M = 3 in
Proposition 5. Let B = K, which demands the minimum sub-
sampled FFT size. Fig. 14 shows the recovering rate as a func-
tion of the number Rupdate of signal updating iterations. Again,
we see that the theoretical results corroborate the simulation
results. Also, for K ≤ 32, the recovering rate achieves above
95% using two updating iterations. The recovering rate is almost
100% using three updating iterations for all values of K in this
simulation.

Fig. 14. Recovering rate as a function of the number of signal updating itera-
tions: B = K .

Fig. 15. Complexity as a function of recovering rate for various parameter
settings: K = 29 and N = 215 .

Experiment 5. Trade-off between performance and complex-
ity with various parameter settings: In this experiment, we see
how the derived analytical results help in determining the best
parameter setting to achieve a good trade-off between perfor-
mance and complexity. The philosophy is that by using a small
value of B, the subsampled FFT size can be reduced; while its
performance degradation can be compensated by using signal
updating iterations. For the complexity, it is calculated as fol-
lows: The complexity of multiplying a window function with
length L is with O(L), subsampled FFT with size B is with
O(B log B), and conducting both the location and estimation
loop iterations is with O(dK N

B). Because the numbers of itera-
tions is Router for outer loops and is Rupdate for signal updating,

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 25,2022 at 12:41:50 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PERFORMANCE OF SPARSE FAST FOURIER TRANSFORM AND ENHANCEMENT ALGORITHM 5727

Fig. 16. Complexity as a function of recovering rate for various parameter
settings: K = 210 and N = 216 .

the total complexity has an order of

O
(

RupdateRouter

(

L + B log B + dK
N

B

))

.

The number of iterations in the estimation loop is 10.
Figs. 15 and 16 show the complexity as a function of re-
covering rate for various parameter settings, respectively, for
K = 29 , N = 215 and K = 210 , N = 216 .

We observe from the two figures, if nearly 100% recovering
rate is demanded, minimum complexity is achieved by using
B = 2K and letting the number of signal updating iterations be
two. Because there are a numerous number of parameter set-
tings in practical designs, the theoretical results in Proposition 5
indeed help in determining a suitable parameter setting without
running time-consuming simulations.

V. CONCLUSION

In this paper, we have analyzed the recovering rate per-
formance of the SFFT system and derived the corresponding
closed-form expressions. With these accurate closed-form re-
sults, the relationships between the performance and complex-
ity are known for various implementations without conducting
cumbersome simulations. Also, we have shown how to deter-
mine the parameters such as subsampling FFT size, and the
numbers of outer loop and signal updating iterations to achieve
the lowest computational complexity. Moreover, inspired by the
theoretical results, we have proposed a new mode-mean esti-
mator, which has been shown to outperform the conventional
median estimator, verified via the simulation results. Since there
is an increasing number of emerging applications that use large-
size FFT and with sparse signals, these analyses and the new
estimation algorithm provide timely engineering references for
practical designs.

APPENDIX

A. Proof of Proposition 1

If two random variables X and Y are uncorrelated, the vari-
ance of the product of X and Y is given by

Var(XY) = E
{
(XY)2}− (E{XY })2

= E
{
X2}E

{
Y 2}− (E{X})2 (E{Y })2 .

Then (6) becomes

σ2 = E

⎧
⎨

⎩

⎛

⎝
K−1∑

j=0,j �=i

G[d(Ii, Ij)]X[Ij]

⎞

⎠

2⎫
⎬

⎭
E

{(
1

G[o(Ii)]

)2
}

−
⎛

⎝E

⎧
⎨

⎩

K−1∑

j=0,j �=i

G[d(Ii, Ij)]X[Ij]

⎫
⎬

⎭

⎞

⎠

2(

E

{
1

G[o(Ii)]

})2

.

Since the input sparse signal X is assumed to have zero mean,

it yields E
[∑K−1

j=0,j �=i G[d(Ii, Ij)]X[Ij]
]

= 0, and σ2 becomes

K−1∑

j=0,j �=i

E

{(
G[d(Ii, Ij)]

)2
}

E

{(
X[Ij]

)2
}

E

{(
1

G[o(Ii)]

)2
}

.

(24)

The expression in (24) leads to (7) by using the variance σ2
x .

B. Proof of Lemma 2

Let b = hF (Ii) be an index in {0, 1, , . . . , B − 1} in subsam-
pled FFT. Then the probability of hF (Ii) is given by

Pr
[

hF (Ii) = b

]

= Pr
[

round

(

fF (Ii)
B

N

)

= b

]

. (25)

Using the definition of rounding function, (25) becomes

Pr
[

b − 1
2
≤ fF (Ii)

B

N
< b +

1
2

]

= Pr
[(

b − 1
2

)
N

B
≤ fF (Ii) <

(

b +
1
2

)
N

B

]

. (26)

Using Lemma 1, we obtain that

Pr
[

hF (Ii) = b

]

=
(b + 1

2)N
B − (b − 1

2)N
B

N
=

1
B

. (27)

C. Proof of Lemma 3

In Lemma 2, the probability that hF (Ii) falls in a specific
index after subsampling is 1

B . If the number of sparse ele-
ments is K, the question that a specific sparse element does not
overlap with other sparse elements, i.e., hF (Ii) �= hF (Ij), j ∈
{0, 1, . . . ,K − 1}\{i}, can be regarded as a combinatorics
problem. This is equivalent to ask: Suppose that there are K
independent balls numbered X0 ,X1 , . . . , XK−1 thrown into
B independent boxes numbered b0 , b1 , . . . , bB−1 . What is the

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 25,2022 at 12:41:50 UTC from IEEE Xplore. Restrictions apply.

5728 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 21, NOVEMBER 1, 2017

probability that a box has only one ball? Hence this probability
is given by:

p = B ×
(

1
B

)

× (B − 1)K−1 ×
(

1
B

)K−1

= (B − 1)K−1 ×
(

1
B

)K−1

=
(

1 − 1
B

)K−1

.

D. Proof of Lemma 4

Let p2 denotes the probability that exactly two
sparse elements overlap, i.e., hF (Ii) = hF (Ij) �= hF (Ik), Ik ∈
I\{Ii, Ij}. From Lemma 3, the probability that a specific
sparse element does not overlap with other sparse elements is
(
1 − 1

B

)K−1
. It can be shown that p2 is given by

p2 =
B × 1 × BK−2

BK
=
(

1
B

)1 (

1 − 1
B

)K−2

, (28)

and there are
(
K−1

1

)
events with probability p2 .

Let p3 denotes the probability that exactly three sparse ele-
ments overlap, i.e., hF (Ii) = hF (Ij) = hF (Ik) �= hF (I�), I� ∈
I\{Ii, Ij , Ik}. Similarly, p3 can be shown to be

p3 =
B × 1 × 1 × BK−3

BK
=
(

1
B

)2 (

1 − 1
B

)K−3

, (29)

and there are
(
K−1

2

)
events with probability p3 .

Let pi denotes the probability that exactly i sparse elements
overlap. Applying the mathematical induction, we have

pi =
B × 1(i−1) × BK−i

BK
=
(

1
B

)i−1 (

1 − 1
B

)K−i

, (30)

and there are
(
K−1
i−1

)
events with probability pi .

E. Proof of Proposition 2

Let pi be the probability that exact i sparse elements over-
lap and xi,j be the number of events that exact i sparse ele-
ments overlap (the jth situation) in the Router iterations, where

Router =
∑K

i=1
∑(K −1

i−1)
j=1 xi,j . The probability that in the Router

iterations, there are x1,1 times that no sparse elements overlap
∩ there are x2,1 times that two sparse elements overlaps (the
first situation) ∩ · · · ∩ there are x2,2 times that two sparse el-
ements overlaps (the second situation) ∩ · · · ∩ there are xK,1
times that K sparse elements overlaps can be expressed as in
(19). Since mode operation is used in the proposed estimator,
a specific sparse element can be reconstructed if the number of
events that no sparse elements overlap is greater than the number
of events that two sparse elements overlap, ∩ than that of three
sparse elements overlap, ∩ · · · ∩ than that of K sparse elements
overlap. That is, if x1,1 = α, one needs α > x2,1 ∩ α > x2,2
∩ . . . ∩ α > xK,1 to ensure that the mode operation leads to
the correct result. This probability is defined in (18), and can be
calculated using (19). Since the proposed mode-mean estimator

identifies an element as a sparse element when greater than or
equal to M equalized values from the Router iterations have
identical rounded values, the identifying probability of the pro-
posed scheme is the summation of Sα , for α from M to Router ,
as in (17). The recovering rate can be approximated by this
identifying probability if the assumptions that we mentioned
between Lemma 3 and Lemma 4 hold.

F. Proof of Proposition 3

When the value of K is sufficiently large, the probability that
any two sparse elements overlap become small. The probability
that more than two sparse elements overlap become negligible.
In this case, we may set ti,j = 0 for i > 2 in (19), and there
are two events; one is no-overlapping and the other is overlap-
ping by two sparse elements. Hence, there are two probabilities
corresponding to these two events, i.e., p1,1 and p2,i . By letting
p1,1 = p and

∑
i p2,i = (1 − p), the probability in (19) can be

approximated by (20). Similar approximation was used in [25].

G. Proof of Lemma 5

From Lemmas 1 and 2, hF (Ii) has a uniform distribution
in [0, 1, 2, . . . , B − 1] and fF (j) has a uniform distribution in
[0, 1, 2, . . . , N − 1]. Then X = h(Ii)N

B has a uniform distribu-
tion in [0, N

B , 2N
B , . . . , (B − 1)N

B] and Y = fF (j) has a uniform
distribution in [0, 1, 2, . . . , N − 1]. The difference Z = X − Y
can be regarded as the sum of two independent discrete random
variables Z = X + (−Y) = X + Y ′. Let the PMF of X be fX

and the PMF of Y ′ be f ′
Y . Then the PMF of Z is given by

fZ (z) = fX ∗ fY ′(z)

=
z∑

x=0

fX (x)fY (x − z), x = 0, 1, . . . , z. (31)

From (31), fZ (z) is with triangular shape. Let the PMF of Z ′

be fZ ′ = f(Z)m o d N
. After performing modulo operation in the

triangular shape PMF of fZ (z), the PMF of fZ ′ has a uniform
distribution in [0, 1, 2, . . . , N − 1] with probability 1/N , which
is also the PMF of d(Ii, Ij).

H. Proof of Lemma 6

In a practical window, the condition that a specific sparse ele-
ments overlaps with other sparse elements when the conditions
in (21) hold. From Lemma 5, d(Ii, Ij) is uniformly distributed
in [0, 1, 2, · · · , N − 1]. Thus the overlapping probability can be
expressed as

Pr {d(Ii, Ij) ≤ 2εsN} =
2εsN

N
= 2εs , (32)

On the other hand, the non-overlapping probability is

1 − 2εs . (33)

Since there are totally K sparse elements, all the elements do
not overlap each other in one iteration is thus given by

p = (1 − 2εs)
K−1 . (34)

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 25,2022 at 12:41:50 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PERFORMANCE OF SPARSE FAST FOURIER TRANSFORM AND ENHANCEMENT ALGORITHM 5729

ACKNOWLEDGMENT

The authors would like to thank all the anonymous reviewers
for their constructive suggestions, which have significantly im-
proved the quality of this work. They would also like to thank
H. Hassanieh et al. in MIT for opening the source codes of SFFT
that have facilitated the development of this work. Additionally,
the support from the Industrial Technology Research Institute
(ITRI) is greatly appreciated.

REFERENCES

[1] Very-High-Bit-Rate Digital Subscriber Line Transceiver 2 (VDSL2), ITU-
T Standard G.993.2, Feb. 2006.

[2] Digital Framing Structure, Channel Coding and Modulation for a Second
Generation Digital Terrestrial Television Broadcasting System (DVB-T2),
ETSI EN 302 755 V1.1.1, 2009.

[3] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional
networks through FFTs,” arXiv preprint arXiv:1312.5851, 2013.

[4] A. Zlateski, K. Lee, and H. S. Seung, “ZNN—A fast and scalable algo-
rithm for training 3D convolutional networks on multi-core and many-
core shared memory machines,” in Proc. IEEE Int. Parallel Distrib.
Process. Symp., 2016, pp. 801–811.

[5] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Ex-
act signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[6] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
pp. no. 4, 1289–1306, Apr. 2006.

[7] R. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag., vol. 24,
no. 4, pp. 118–121, Jul. 2007.

[8] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,”
IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30, Mar. 2008.

[9] R. Baraniuk and P. Steeghs, “Compressive radar imaging,” in Proc. IEEE
Radar Conf., Apr. 2007, pp. 128–133.

[10] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed
sensing MRI,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 72–82,
Mar. 2008.

[11] T. T. Do, Yi Chen, D. T. Nguyen, N. Nguyen, L. Gan, and T. D. Tran,
“Distributed compressed video sensing,” in Proc. IEEE Int. Conf. Image
Process., Nov. 2009, pp. 1393–1396.

[12] L. Balzano, R. Nowak, and J. Ellenberg, “Compressed sensing audio
demonstration,” 2012. [Online]. Available: http://sunbeam.ece.wisc.edu/
csaudio/

[13] A. C. Gilbert, M. J. Strauss, and J. A. Tropp, “A tutorial on fast
Fourier sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 57–66,
Mar. 2008.

[14] H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “sFFT: Sparse fast Fourier
transform,” 2015. [Online]. Available: http://groups.csail.mit.edu/netmit/
sFFT/

[15] H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Simple and practical
algorithm for sparse Fourier transform,” in Proc. 23rd Annu. ACM-SIAM
Symp. Discrete Algo., 2012, pp. 1183–1194.

[16] H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Nearly optimal sparse
Fourier transform,” in Proc. 44th Annu. ACM Symp. Theory of Comput.,
2012, pp. 563–578.

[17] A. C. Gilbert, P. Indyk, M. Iwen, and L. Schmidt, “Recent developments
in the sparse Fourier transform: A compressed Fourier transform for big
data,” IEEE Signal Process. Mag., vol. 31, no. 5, pp. 91–100, Sep. 2014.

[18] S.-H. Hsieh, C.-S. Lu, and S.-C. Pei, “Sparse fast Fourier transform by
downsampling,” Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
2013, pp. 5637–5641.

[19] S.-H. Hsieh, C.-S. Lu, and S.-C. Pei, “Sparse fast Fourier transform for
exactly and generally k-sparse signals by downsampling and sparse re-
covery,” arXiv preprint arXiv:1407.8315, 2014.

[20] S. Heider, S. Kunis, D. Potts, and M. Veit, “A sparse prony FFT,” in Proc.
10th Int. Conf. Sampl. Theory App., 2013, pp. 572–575.

[21] A. Rauh and G. R. Arce, “Optimized spectrum permutation for the mul-
tidimensional sparse FFT,” IEEE Trans. Signal Process., vol. 65, no. 1,
pp. 162–172, Jan. 2017.

[22] S. Pawar and K. Ramchandran, “R-FFAST: A robust sub-linear time al-
gorithm for computing a sparse DFT,” IEEE Trans. Inf. Theory, 2017,
preprint, doi: 10.1109/TIT.2017.2679053.

[23] S. A. Talwalkar and S. L. Marple, “Time-frequency scaling property of
discrete Fourier transform (DFT),” Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., Mar. 2010, pp. 3658–3661.

[24] J. O. Smith, “Fourier theorems for the DFT,” in Mathematics of the
Discrete Fourier Transform (DFT) with Audio Applications, 2nd ed.,
2007. [Onine]. Available: http://ccrma.stanford.edu/∼jos/mdft/Fourier_
Theorems_DFT.html. Accessed on: 2017.

[25] R. J. Larsen and M. L. Marx, An Introduction to Mathematical Statistics
and Its Applications, 5th ed. Englewood Cliffs, NJ, USA: Prentice-Hall,
2012.

Gui-Lin Chen was born in Taipei, Taiwan, in 1989.
He received the B.S. degree from the Department
of Electrical Engineering, National Central Univer-
sity, Taoyuan, Taiwan, in 2011, and the M.S. degree
in electrical and computer engineering from the Na-
tional Chiao-Tung University, Hsinchu, Taiwan, in
2016. His research interests include signal processing
for communications and wireless communications.

Shang-Ho (Lawrence) Tsai (SM’12) was born in
Kaohsiung Taiwan. He received the Ph.D. degree in
electrical engineering from the University of South-
ern California, Los Angeles, CA, USA, in August
2005. From June 1999 to July 2002, he was in the Sili-
con Integrated Systems Corporation, where he partic-
ipated in the VLSI design for DMT-ADSL systems.
From September 2005 to January 2007, he was in the
MediaTek Inc., participating in the VLSI design for
MIMO-OFDM systems and standard specifications
for IEEE 802.11n.

He was a Visiting Fellow in the Department of Electrical Engineering at
the Princeton University in June 2013–December 2013. Since February 2007,
he has been in the Department of Electrical Engineering, National Chiao Tung
University, Hsinchu, Taiwan, where he is currently a Professor. His research
interests include signal processing for communications, statistical signal pro-
cessing, and signal processing for VLSI designs.

He was awarded a government scholarship for overseas study from the Min-
istry of Education, Taiwan, in 2002–2005.

Kai-Jiun Yang received the B.S. degree from
Tamkang University, Taipei, Taiwan, R.O.C., in 1999,
and the M.S. degree from University of Southern Cal-
ifornia, Los Angeles, CA, USA, in 2001, both in
electrical engineering. From 2001 to 2009, he was in
the Trendchip Technologies (now EcoNet Inc.) and
developed DMT-ADSL chip-set. He is currently
working toward the Ph.D. degree in electrical and
control engineering at the National Chiao-Tung Uni-
versity, Hsinchu, Taiwan. He is also in the Industrial
Technology Research Institute, Hsinchu, Taiwan,

R.O.C., where he participates in developing machine learning platform. His re-
search interests include signal processing, VLSI deign, and hardware–software
codesign.

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 25,2022 at 12:41:50 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

