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Power Allocation for Artificial-Noise
Secure MIMO Precoding Systems
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Abstract—This paper investigates the power allocation problem
for artificial noise (AN) secure precoding systems, and proposes
closed-form solutions for maximizing the achievable secrecy rate.
It is assumed that the transmitter knows the full channel infor-
mation at the legitimate receiver, and knows only the statistics
of the channel information at the eavesdropper. Lower bounds
are derived for the secrecy rates in multiple-input single-output
channels with single or multiple eavesdroppers and multiple-input
multiple-output channels with multiple eavesdroppers. When the
number of transmit antennas is sufficiently large, the bounds are
tight, and closed-form solutions can be derived from these bounds.
The analytical results suggest simple and yet informative solutions
as follows: Let the numbers of receive antennas at the legitimate
receiver and at the eavesdropper be and , respectively.
The system should distribute of the power to
AN in the high SNR regime, and distribute zero power to AN
in the low SNR regime; the rate loss due to the eavesdropper
is
bits/sec/Hz in the high SNR regime and nearly negligible in the
low SNR regime. The derived results also show that equal power
and water-filling power allocations lead to similar solutions and
rate loss. Simulation results corroborate the theoretical results.

Index Terms—Artificial noise, beamforming, MIMOME, MI-
SOME, physical layer security, power distribution, precoding,
secrecy capacity, wire-tap channel.

I. INTRODUCTION

M ULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO)
techniques are widely used in contemporary commu-

nication systems owing to their ability to increase channel
capacity and diversity gain. Recently considerable research
has been conducted into the potential use of multiple-antenna
techniques for achieving security in the wireless physical layer.
In 1949, Shannon introduced an information theoretic formu-

lation of communication security in his work [1]. Subsequently,
Wyner in [2] formulated the transmission secrecy problem, in
which a transmitter sends information to a legitimate receiver
which is also intercepted by an eavesdropper via the so called
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wire-tap channel. He defined and analyzed the secrecy capacity
using Shannon’s theory, and these ideas have since been widely
used in research on physical layer security. Notably the au-
thors in [3] considered the secrecy capacity for multiple-input
single-output (MISO) channels assuming that the CSI (channel
state information) of both the legitimate receiver and the eaves-
dropper is known to the transmitter. In this case, the capacity
is achieved by beamforming/precoding toward a direction that
is as orthogonal to the eavesdropper as possible, while simul-
taneously being as close to the legitimate receiver as possible.
This result was extended by the same authors to a 2 2 MIMO
channel in [4]. The secrecy capacity of MIMO channels has
been further widely treated, e.g., [5]–[11]. The authors in [12]
considered the secrecy capacity for MISO channels with mul-
tiple eavesdroppers, i.e., so-called MISOME (multiple-input,
single-output, multiple-eavesdropper) channels. A bound on the
capacity of MISOME channels was derived assuming that the
CSI from both the legitimate receiver and the eavesdropper is
known to the transmitter. The MIMOME (MIMO, multiple-
eavesdropper) channels were investigated by the same authors
in [8].
When the CSI of the legitimate receiver and the eavesdropper

is known to the transmitter, several studies have investigated the
optimal transmit covariance matrix and the corresponding char-
acteristics for maximizing the secrecy capacity. For example,
in [13] transmitting signals in the positive directions of the dif-
ference channel has been shown to be a necessary condition for
optimality. Also, an explicit closed-form solution for full-rank
covariance matrices was proposed, while in [14], the full-rank
solution was extended by the same authors to a rank-deficient
case, where the null space of the direct channel is in the null
space of the indirect channel. The authors in [14] also consid-
ered the situation in which only limited CSI of the eavesdropper
is known to the transmitter. The authors in [15] independently
proved that full rank is a necessary and sufficient condition for
the optimal transmit covariance using a different approach. In
addition, they also showed that when the covariance is deficient,
there exists an equivalent set of channels and a full-rank transmit
covariance matrix that achieve the same secrecy capacity.
The use of artificial noise (AN) to impair the receive quality

of the eavesdropper was proposed in [16]. This scheme is also
called “masked beamforming” in MISO channels [12], and
“masked precoding” in MIMO channels [8]. We will call this
method “AN precoding” in this work. AN precoding systems
assume that the eavesdropper is passive, and that the CSI of the
eavesdropper is unknown to the transmitter. For a total transmit
power , AN precoding systems use partial power, say ,
to transmit data, and allocate the residual power, , to
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transmit the artificial noise, where . The authors of
[16] have shown that the AN precoding scheme guarantees a
positive secrecy rate even if the noise variance of the eaves-
dropper approaches zero, i.e., under the situation in which the
eavesdropper is very close to the transmitter. The performance
of AN precoding systems with limited feedback was evaluated
in [17]. A generalized scheme based on the AN precoding
system for MISOSE (MISO single-eavesdropper) channels
was proposed in [19], where the AN can be transmitted in the
signal direction, not necessarily in the null space of the direct
channel. The authors in [12] also analyzed the performance of
AN precoding systems in MISOME channels, and showed that
it is close to optimal in MISOME channels when the number of
transmit antennas is large and the SNR is high; the performance
for MIMOME channels was analyzed in [8].
Although the authors in [8], [12] and [16] have derived per-

formance bounds for AN precoding systems, it is still unclear
how to allocate the power between the transmit data and the
artificial noise to maximize the average secrecy rate. In [17],
the authors showed by simulation that when only limited feed-
back is available, the AN precoding scheme sometimes per-
forms worse than the conventional precoding scheme (without
AN precoding) [18]. Thus it is not clear whether or not one
should add artificial noise if one is not sure about the appro-
priate value of . Inappropriate power allocation in AN pre-
coding schemes can lead to a serious degradation of secrecy rate.
Although simulation may be used to determine suitable values
of , this is time consuming and different parameter settings
such as changing SNR and numbers of antennas lead to different
optimal values of . Thus if closed-form solutions for optimal
values of were available, it would help us gain greater insight
into AN precoding systems. The discussions above motivate us
to investigate the following questions: 1) are there closed-form
optimal (or approximately optimal) solutions for for maxi-
mizing the secrecy rate? 2) What is the maximum rate loss due
to the eavesdropper in such systems, i.e., the difference between
the secrecy rate of AN precoding systems and the traditional
MISO/MIMO achievable rate without eavesdroppers?
In this paper, we investigate the average secrecy rates of

AN precoding systems in MISOSE, MISOME and MIMOME
channels with large numbers of transmit antennas and moderate
numbers of receiver antennas. Systems with large numbers
of antennas are usually regarded as massive MIMO systems,
and have attracted considerable research attention recently,
e.g., see [20]–[22]. In massive MIMO systems, base stations
are equipped with very large numbers of antennas, possibly
tens to hundreds of antennas [22]. We derive theoretical lower
bounds on the average secrecy rate in MISOSE, MISOME and
MIMOME channels. The bounds become tight as the number
of transmit antennas increases; thanks to the tight low bounds,
closed-form solutions for to maximize the average secrecy
rate are available. From the suggested solutions, we have the
following interesting findings:
First, for MISOSE channels, the suggested solution of is

1/2 in the high SNR regime, and is 1 in the low SNR regime;
the corresponding average rate loss due to the eavesdropper, i.e.,
the difference between the secrecy rate of the AN precoding
system and the traditional achievable rate without the eaves-
dropper, is 2 bits/sec/Hz in the high SNR regime, and is nearly

negligible in the low SNR regime. Moreover, for MISOME and
MIMOME channels, the suggested solution is

, in the high SNR regime, and is in the low SNR
regime, where and are the numbers of receive antennas
at the legitimate receiver and the eavesdropper, respectively;
the corresponding average rate loss due to the eavesdropper
is
bits/sec/Hz in the high SNR regime, and is nearly negligible in
the low SNR regime. It is interesting to note that in the low SNR
regime the proposed is 1, and the corresponding rate loss for
MISOSE, MISOME and MIMOME channels are all negligible.
Thus, there may be no need to use AN precoding in the low SNR
regime. On the other hand, although the results for MISOSE and
MIMOME channels are not the same in the high SNR regime,
they still have some similarities. To see this, if in
MIMOME channels, the suggested solution is and the
corresponding rate loss is . Although the rate
loss increases linearly with , if one considers that the achiev-
able rate of the legitimate receiver also increases linearly with
, this loss is reasonable; normalizing the rate loss by , it be-

comes 2 bits/sec/Hz, which is the rate loss inMISOSE channels.
Furthermore, in MIMOME channels, we evaluate equal power
allocation and water-filling power allocation. These two power
allocations are commonly used in traditional MIMO communi-
cations. We find that both schemes have similar solutions for
and rate loss due to the eavesdropper. Note that the optimal

power allocations may be obtained via optimization methods if
certain conditions are available to the transmitter. Finally, sim-
ulation results are provided to demonstrate the accuracy of the
theoretical results. We also learn from the results that inappro-
priate values of indeed seriously degrade the performance.
The rest of this paper is organized as follows. The system

model and problem formulation are presented in Section II. The
secrecy rate, the proposed power allocation and the maximum
rate loss for MISOSE, MISOME and MIMOME channels are
analyzed respectively in Section III and Section IV. More
specifically, for MIMOME channels, equal power allocation
and water-filling power allocation are considered separately in
Section IV-A and Section IV-B. Simulation results are provided
in Section V. Our conclusions are summarized in Section VI.
Notation: Boldfaced lowercase letters and boldfaced upper-

case letters denote vectors and matrices, respectively. and
denote, respectively, the mean and variance of the random

variable . denotes the conjugate of the matrix , while
is the conjugate-transpose of . and denote respec-
tively the real and the imaginary parts of the complex number
. is the determinant of , and is the trace of
. forms a diagonal matrix with the elements inside the

brace. for a real variable . is the Frobe-
nius norm of .

II. SYSTEM MODEL AND PROBLEM FORMULATION

This work considers downlink transmission, in which the
transmitter (Alice) has transmit antennas, the legitimate
receiver (Bob) has receive antennas, and the eavesdropper
(Eve) has receive antennas. We assume that the transmitter
knows full CSI of Bob, but only channel statistics of Eve. We
further assume that is large, and in particular is much larger
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than and . To maximize the achievable rate, the trans-
mitter sends data streams. Let be an data vector.
is precoded by an precoding matrix , and then

transmitted to the legitimate receiver via an MIMO
channel . The signal is also received by the eavesdropper via
an wire-tap channel . The elements in and

are assumed to be independent and identically distributed
(i.i.d.) complex Gaussian with distribution , where the
variance 2 is to reflect that each of the real and the imaginary
parts has unit variance. In this paper, we adopt the scheme
proposed in [16], where partial transmit power is used for
the artificial noise. The artificial noise lies in the null space
of . Let the null space be , such that

. The artificial noise is represented as , where
is an complex Gaussian noise vector with

covariance matrix . For the legitimate receiver, the received
signal can be expressed as

(1)

where is an independent Gaussian noise vector with co-
variance matrix . For the eavesdropper, the received signal
is given by

(2)

where is an independent Gaussian noise vector with
covariance matrix . Let the covariance matrix of be .
The maximum achievable rate of the legitimate receiver is given
by [24]

(3)

The maximum achievable rate of the eavesdropper can be ex-
pressed as [16], [24], [28]

(4)

From (3) and (4), the following secrecy rate can be achieved:

(5)

The goal is to maximize the average secrecy rate, i.e.,
, where the expectations are with respect to the

precoder and random channels. Since the eavesdropper is pas-
sive, the channel information of is not available to the trans-
mitter. Under this situation, it is reasonable to use the sin-
gular vectors corresponding to the largest singular values of
as the precoder [3], [16]. Thus the goal becomes to determine

how to distribute the power between and to maximize
. Let the total transmit power be . The problem can thus

be formulated as follows:

(6)

The AN precoding systems in MISOSE, MISOME and MI-
MOME channels are analyzed in the following sections.

III. ACHIEVABLE RATE IN MISOSE CHANNELS

This section analyzes the achievable rate for MISOSE chan-
nels. Similar procedures will be used for analyzing MISOME
andMIMOME channels. In MISOSE channels, and
becomes , which is the average power of the transmit data.
Since the artificial noise vector is of dimension , the
power constraint becomes . On letting
be the power for data transmission, and be that for the
artificial noise, we have and .
Let be the MISO channel of the legitimate receiver,
and be the wire-tap channel of the eavesdropper. The
precoder is

(7)

Define SNR and . From (3) and (4),
the achievable rate of the legitimate receiver becomes

(8)

and the achievable rate of the eavesdropper becomes

(9)

To analyze and , we need the statistics of ,
and . The following lemmas will help in the analysis.
Lemma 1: When the precoder in (7) is used, the value of

converges in probability to as approaches .
Proof: Please see Appendix A.

Lemma 2: The random variable has the distribu-
tion with degrees of freedom.

Proof: Please see Appendix B.
Lemma 3: When approaches , the achievable rate of the

eavesdropper can be approximated by a concave function of
the random variable , and can be approximately
upper bounded by

(10)

Proof: The following equation is useful in the derivations
for MISO and MIMO channels:

(11)

where the columns of are the right singular
vectors corresponding to the maximum singular values of
and is the null space of such that .
(11) can be easily proved by first noting that ,
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since and form an orthonormal basis. Then (11) is obtained
by left and right multiplying by and taking the trace. From
(9) and (11), we have

(12)

Using arguments similar to those used for proving Lemma 1,
as . Hence (12) can be approximated by

(13)

From Lemma 2, has the distribution with two de-
grees of freedom, and its mean is . Thus, it is
reasonable to say because . Hence, we
can further approximate (13) by

(14)

which is a concave function of . Applying Jensen’s In-
equality to (14) leads to the result in (10).
Theorem 1: When approaches , the average secrecy rate

for MISOSE channels can be approximately lower bounded by

(15)

Proof: From (8) and Lemma 1, we have

(16)

Together with Lemma 3, this theorem is proved.
Discussion 1: Accuracy of Theorem 1: Please note that the

approximate bound in (15) is a true bound when is suf-
ficiently large so that the approximation in (16) is accurate.
When is not sufficiently large, the bound in (15) may no
longer be exact and it should be considered, instead, to be an
approximation.
In general, however, the approximation in (16) is quite accu-

rate. Consequently, the confidence in saying that (15) is indeed
a bound is high. To see this more clearly, we discuss and

respectively as follows: For , some numerically
feasible closed-form solutions can be found in [25] and [26].
More specifically, from (8) and [26]

(17)

where is the th order exponential integral given by

Fig. 1. Comparisons among the theoretical, simulation, and approximation
results.

Let and , 10 and 30 dB. Fig. 1 shows
the Monte Carlo simulation result, proposed approximation in
(16), and the theoretical result in (17) for . From the figure,
the approximation in (16) is generally accurate; for instance, for

, the rate difference between the approximation in (16)
and the theoretical result in (17) is less than 0.1 bits/sec/Hz.
Now let us investigate , which is defined as

(18)

That is, the expected value is obtained by averaging over dif-
ferent precoding vectors and channels. Let us first assume the
channel between the transmitter and the eavesdropper is fixed
and analyze . This situation may apply in fixed commu-
nications, in which both the transmitter and the eavesdropper
do not move so that the indirect channel stays unchanged for a
long period. Define , ,

, and . We have the following
corollary:
Corollary 1: When and is fixed, in (12)

is a concave function of , and hence can be upper
bounded by

(19)

Proof: Let . From (12), we have

(20)

It is obvious that , for . Also, for
. From (20), taking the first derivative of yields

(21)
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Fig. 2. Value of .

From (21), when , ; in this case, is
a monotonically increasing function of . Taking the second
derivative of leads to

(22)

From (22), when , ; in this case,

is a concave function of , and one can apply Jensen’s
Inequality to (12) and obtain (19).
Now let us evaluate the probability that so that is

a concave function of , and (19) is exactly an upper bound.
Let and . The value of as a function
of for different values of is shown in Fig. 2. Observe
that as the value of decreases, the value of increases.
Also, we see that tends to be unchanged when the value of

increases to a certain level. The larger the value of is,
the higher probability that the bound in (19) holds. For example,
when , for , and for

. Since has the distribution with two degrees of
freedom, the probability is 0.9734 for , and
0.9997 for , respectively.
If the indirect channel is not fixed, from (19), the average rate

is upper bounded by

(23)
where has the distribution with degrees of
freedom. To the authors’ knowledge, a simple closed-form
solution for (23) is not available. Let . Fig. 3 shows
the proposed approximate bound, i.e., in (10), and
the Monte Carlo simulation results for (23). Observe that
the approximate error is less than 0.1 bits/sec/Hz. Also, the
error decreases as increases because converges in
probability to when approaches . Moreover, the
approximation is more accurate in the low SNR regime than in
the high SNR regime. From the discussion above, we conclude

Fig. 3. Comparisons between the simulation and approximate results for .

Fig. 4. Comparisons between the simulation and approximate results for .

that the proposed approximations for and in
Theorem 1 are generally accurate.
To compare the ergodic secrecy rate , we as-

sume for convenience of presentation . Fig. 4 shows the
approximate result for proposed in (15) and the corre-
sponding Monte Carlo simulation result (by using (8) and (9)).
Observe from the figure, that the approximate result is generally
a lower bound when is sufficiently large.
Let be the achievable rate without considering the eaves-

droppers; that is, can be obtained by letting in . To
gain greater insight into the results in Theorem 1, we continue
to assume that , which results in , to
have the following corollaries and remark.
Corollary 2: In the high SNR regime , as
, the rate loss due to the eavesdropper in MISOSE channels,

i.e., the difference between the secrecy rate and the achiev-
able rate without the eavesdropper, can be approximately upper
bounded by

The proposed value of is .
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Proof: When , the bound in (15) can be approx-
imately bounded by

(24)

Since log is an increasing function, the value of is max-
imized when is maximized. Hence taking the derivative of

in (15) in terms of , and letting it be zero, the op-
timal value of is . This solution meets the con-
straint that . Substituting into (24) and because

, this corollary is proved.
Corollary 3: In the low SNR regime, as , the rate

loss due to the eavesdropper in MISOSE channels, i.e., the dif-
ference between the secrecy rate and the achievable rate without
the eavesdropper, can be approximated by

The proposed value of is .
Proof: Since the denominator of is greater or

equal to 1, we have

(25)

Since , the following inequalities hold:

(26)

From (15) and (26), the secrecy rate is approximated by

(27)

where the maximum value occurs when . In this case,
there is nearly no rate loss.
Remark 1: From Corollaries 2–3, it is interesting to note that

for AN precoding systems in MISOSE channels, the approxi-
mate rate loss is either 0 or 2 bits/sec/Hz. From the discussion
above, a simple rule for the values of in MISOSE channels
is letting for and letting for

.
Corollary 3 suggests that when the number of transmit an-

tennas is large and the SNR is small, AN precoding only slightly
affects the performance. Thus, the power should all be allocated
for signal transmission. It is worth pointing out that when is
small, the generalized AN precoding for MISOSE channels in
[19] suggested not to allocate the AN power in the null space
of the direct channel. Instead, most of the AN power should be
allocated in the signal direction. When grows, according to
[19], the performance improvement due to the generalized AN
decreases. That is, when is sufficiently large, the generalized
AN and the conventional AN precoding should achieve compa-
rable performance.

IV. ACHIEVABLE RATE IN MISOME AND

MIMOME CHANNELS

The MISOME channels may be regarded as a special case
of MIMOME channels by letting . Thus we discuss

MIMOME channels directly. In MIMOME channels, the trans-
mitter submits data streams to maximize the achievable
rate of the legitimate receiver. We discuss two popular power
allocation methods in MIMO communications, namely the
equal power and the water-filling power allocations. Note that
if the transmitter knows the statistics of the channel between the
transmitter and the eavesdropper and the channel is not i.i.d.,
the transmitter may use the information of the covariance ma-
trix of the channels at the eavesdropper to design the precoder,
using ideas similar to those used for single-user MIMO without
an eavesdropper considered in [27]. For the equal power and
the water-filling power allocations, when the SNR is high,
the equal power allocation achieves comparable performance
to the water-filling power allocation [28]. These two power
allocations schemes are discussed separately as follows.

A. Equal Power Allocation

For MIMO systems with equal power allocation, the covari-
ance matrix of the data vector is . For notational
convenience, we define

(28)

where recall that the precodingmatrix consists of the right sin-
gular vectors corresponding to the maximum singular values
of . Also, let be the th row of . Since

letting and , we can
rewrite (4) as

(29)

Again, letting and yields

(30)

The statistics of the two determinant terms in (30) are discussed
in the following lemmas.
Lemma 4: When and , the last term in

(30) can be approximated by

(31)
where

(32)

Proof: Please see Appendix C.
Discussion 2: Accuracy of Determinant Approximation:

Consider further the determinant approximation in (31). Ac-
cording to [29], given a Hermitian matrix , its diagonal
matrix and off-diagonal matrix , the normalized error for
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the determinant approximation depends on the radius of the
matrix , and is bounded by

(33)

From (31), let

where and are the diagonal and the off-diagonal matrices
of respectively, and

(34)
From (32), when , . Hence, can
be approximated by

;

.
(35)

In the proof of Lemma 4, since
(see (67)), the elements of are distributed as follows:

;

.
(36)

The radius of a matrix is the absolute value of its maximum
eigenvalue. Taking for instance, the eigenvalue

of is . In this case, has the
Rayleigh distribution [23], i.e.,

;

.
(37)

From (37), the radius is highly affected by in both high
and low SNR regimes. For example, when ,

, for . Thus, when
, the second condition in (33) that holds

with very high probability. When the will be
near its mean value with high probability. If a realization

of is , the normalized error is

bounded by for . If the true
determinant value is, for instance 128, the corresponding rate is

; the approximate determinant value is bounded
by , which results in an achievable
rate being 7.0115.

Lemma 5: The first term in (30) can be upper bounded by

(38)

where

(39)

Proof: Please see Appendix D.
Lemma 6: When approaches , the achievable rate of the

eavesdropper can be approximated by a sum of concave

functions of the random variables , where
. In addition, can be approximately upper bounded

by

(40)

Proof: From (30) and Lemmas 4–5, can be approxi-
mately bounded by (41), shown at the bottom of the page. Since

has the distribution with degrees of freedom,
its mean is . Thus, when , it is reasonable to say

. Hence (41) can be further approximated by

(42)

which is a sum of concave functions of . By using
Jensen’s Inequality, the mean value of can be approximately
bounded by (40), which completes the proof.
Next let us discuss the statistics of the achievable rate of the

legitimate receiver. The following lemma is used to approxi-
mate the achievable rate.
Lemma 7: Extreme Eigenvalue Approximations [30]: When
approaches , the maximum eigenvalue of con-

verges in probability as follows:

(43)

and the minimum eigenvalue of converges in prob-
ability as follows:

(44)

(41)
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Lemma 8: When and , the achievable
rate of the legitimate receiver can be approximated by

(45)

Proof: Please see Appendix E.
It is worth mentioning that the same approximate result as in

(45) can be obtained by using the property that
, and the asymptotic property that converges

to as , mentioned in [31].
Theorem 2: When approaches and , the av-

erage secrecy rate forMIMOME channels can be approximately
lower bounded by

(46)

Proof: The theorem is a direct result of Lemma 6 and
Lemma 8.
To gain greater insight into the results in Theorem 2, again,

we assume , which leads to , to have the
following corollaries and remark.
Corollary 4: In the high SNR regime , as
, the rate loss due to the eavesdropper in MIMOME chan-

nels, i.e., , the difference between the secrecy
rate and the achievable rate without the eavesdropper, can be
approximately upper bounded by

The proposed value of is

Proof: When , the bound in (46) can be approx-
imately bounded by

(47)

The first term in (47) is irrelevant to . Since log is an in-
creasing function, the value of is maximized whenever
is maximized. Taking the derivative of in (47)
in terms of , and letting it be zero, the optimal value of is

. This solution meets the constraint that
. Substituting into (47) and using the fact that

, this corollary is proved.
Corollary 5: In the low SNR regime, as , the

rate loss due to the eavesdropper in MIMOME channels, i.e.,
, the difference between the secrecy rate and

the achievable rate without the eavesdropper, can be approx-
imated by

The proposed value of is .
Proof: From the last log term in (46), when , the

value . This approximation leads to the
following inequality:

(48)
The approximate bound in (46) becomes

(49)
From (49), is maximized when . In this case, the
rate loss is given by

(50)

Note that from (49), when and , the rate loss
in (50) is negligible because

due to the fact that . In this case, it is reasonable to
say that there is nearly no rate loss.
Remark 2: According to Theorems 1–2 and Corollaries 2–5,

in the low SNR regime, the proposed value of is 1 and there
is nearly no rate loss when precoding systems are used in both
MISOME and MIMOME channels. On the other hand, in the
high SNR regime, the results for MIMOME channels depend on

and . However, when , the resulting value
of for MIMOME channels is the same as that for MISOSE
channels, i.e., ; also the rate loss for MIMOME chan-
nels is , which increases linearly with . It
is worth mentioning that the results for MISOSE channels can
be regarded as a special case of MIMOME channels by letting

.

B. Water-Filling Power Allocation

Since the CSI at the eavesdropper is not available to the trans-
mitter, the power allocation is determined solely by the CSI at
the legitimate receiver. Recall that is of dimension ,
and the average transmit power is given by

(51)

Let the covariance matrix of the transmitted signal be

(52)
where is a power allocation coefficient such that .
From (51) and (52), we have

(53)

From (53), we have

(54)
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Because , from (51), . With water-
filling power allocation, the achievable rate of the legitimate
receiver is given by [28]

(55)

where is the th eigenvalue of , and with water-
filling power allocation is

(56)

with chosen to satisfy the power constraint .
is available when is obtained.
Lemma 9: When approaches , the achievable rate of

the eavesdropper can be approximated by a sum of

concave functions of the random variables ,
where . Also, can be approximately upper
bounded by

(57)

Proof: From (4), (28), (30) and (52), allocating power only
affects the matrix . Now , where

. Hence the elements of are

;

.
(58)

The random variable is correlated with the eigenvalues .
By using the new definition of in (58), can be represented
by (30). Using arguments similar to those in Lemmas 4–6,
can be approximately bounded by

(59)

which is a sum of concave functions of .
By using Jensen’s Inequality and from (59), the mean value of
is bounded by

(60)

According to [32], the singular values are distributed indepen-
dently of the corresponding right singular vectors. Hence, is
distributed independently of . From (54), , we have
the following equality:

(61)

Using (60) and (61) leads to the result in (57).
Theorem 3: When approaches and , the

average secrecy rate for MIMOME channels with water-filling
power allocation can be approximated by (62), shown at the
bottom of the page, where is defined as

(63)

Proof: From (40) and (57), it is interesting to note that
with equal power and water-filling power allocations is

theoretically bounded by the same form. Thus the difference in
between these two power allocations is mainly deter-

mined by . In the high SNR regime, using equal power
allocation achieves nearly the same value of with that
obtained by using water-filling power allocation [28]. Hence,

with water-filling power allocation is nearly the same as
that with equal power allocation.
For low SNRs, substituting the approximation

into (55) and (57) yields the result in (62).
Using arguments and derivations similar to those in Corol-

laries 4–5, and assuming , we have the following two
corollaries.
Corollary 6: Using water-filling power allocation in the high

SNR regime, as , the rate loss due to the eavesdropper
in MIMOME channels, i.e., , the difference
between the secrecy rate and the achievable rate without the
eavesdropper, can be approximately upper bounded by

The proposed value of is

Corollary 7: Using water-filling power allocation in the low
SNR regime, as , the rate loss due to the eavesdropper
in MIMOME channels, i.e., the difference between the secrecy
rate and the achievable rate without the eavesdropper, can be
approximated by

and ;

otherwise,
(62)
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The proposed value of is . The rate loss is negligible
when .
From Corollaries 2 and 6, in the high SNR regime, the rate

loss with and without water-filling power allocation is nearly
the same. This is reasonable because water-filling power alloca-
tion tends to be equal power allocation as SNR grows [28]. On
the other hand, in the low SNR regime, the rate loss with and
without water-filling power allocation is also close according to
Corollaries 3 and 7. This is also reasonable because the achiev-
able rate of the legitimate receiver is much larger than that of the
eavesdropper regardless of whether or not water-filling power
allocation is applied. Consequently, AN precoding only slightly
affects the secrecy rate, and all power should be allocated for
signal transmission in the low SNR regime.

V. SIMULATION RESULTS

In this section, simulation results are provided to verify the
accuracy of the theoretical results as well as demonstrate how
the proposed values of improve the performance. The theo-
retical results are plotted according to the proposed theorems
and corollaries. Again, for convenience of presentation, we let

and thus . The simulation results are
obtained by conducting Monte Carlo simulation for dif-
ferent channel realizations. The number of transmit antennas

is used if it is not otherwise specifically mentioned.
Example 1: Theoretical and Simulation Results in MISOSE

Channels: Let . The average secrecy rates
for MISOSE channels are shown in Fig. 5, where the achiev-
able rate without considering Eve, i.e., , is also shown to
serve as a performance benchmark. Observe that the simulation
results match well with the theoretical results. First, the average
secrecy rate does obey Theorem 1. Second, when ,
the optimal value of is around 1/2 and the corresponding rate
loss is around 2 bits/sec/Hz, which corroborates the results in
Corollary 2. Third, when the SNR decreases, the rate loss de-
creases; the optimal value of is around 1 and the corresponding
rate loss is negligible when (see the curve with

), which corroborates the results in Corollary 3.
Moreover, we also see from the figure that the rate loss is large
if an inappropriate value of is applied. As for the proposed
value , although the optimal value of is not exactly at
1/2, the achievable rate obtained by the optimal value of using
simulation is very close to that obtained by the proposed value
of . To see this more clearly, Fig. 6 shows the achievable rates
obtained by simulation and the proposed values of as functions
of SNR. Observe that the proposed values of achieves compa-
rable rates to those obtained via simulation (see the circles and
dots). This shows that the proposed values of are indeed good
solutions for AN precoding systems.
Example 2: Theoretical and Simulation Results in MISOME

and MIMOME Channels: This example shows the average
secrecy rates for MISOME and MIMOME channels. For MI-
SOME channels, let and . For MIMOME
channels, let and . The average secrecy rates
for MISOME and MIMOME channels are shown in Figs. 7 and
8, respectively, where the achievable rates without considering
Eve, i.e., , are also provided to serve as performance
benchmarks. Performance trends similar to those in Example 1

Fig. 5. as a function of for MISOSE channels; ,
.

Fig. 6. as a function of SNR forMISOSE channels; ,
.

are observed from these two figures. First, the average secrecy
rate indeed fellows Theorem 2 well. Second, when ,
the optimal value of is around (1/3 in Fig. 7,
and 1/2 in Fig. 8) and the corresponding rate loss is around

bits/sec/Hz (2.755
in Fig. 7, and 8 in Fig. 8), which corroborates the results in
Corollary 4. Third, when the SNR decreases, the rate loss
decreases; the optimal value of is around 1 and the corre-
sponding rate loss is negligible when (see the curves
with in these two figures), which corroborates
the results in Corollary 5. As for the proposed value of ,
although it is not exactly the optimal value, the achievable rate
obtained by the optimal value of via simulation is very close
to that obtained by the proposed value of . To see this more
clearly, Figs. 9 and 10 show the achievable rates obtained by
simulation and the proposed values of as functions of SNR
for MISOME and MIMOME channels, respectively. Observe
that the proposed values of achieve rates comparable to those
obtained by simulation (see the circles and dots in the two
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Fig. 7. as a function of for MISOME channels; ,
and .

Fig. 8. as a function of forMIMOME channels; ,
and .

figures). This again shows that the proposed values of are
indeed good solutions for AN precoding systems in MISOME
and MIMOME channels. Finally, it is worth pointing out that
in the high SNR regime, the gap between the simulation and
the theoretical results is more pronounced when the value of
is close to 1, see e.g., the curves with in Fig. 7.
This is reasonable because referring to (38), when the value of
and SNR increase, the matrix affects the approximation

significantly. For , the approximation is more accurate
for than for . Fortunately, when
increases, the optimal value of tends to be small according
to Corollary 4, and the proposed approximation is accurate for
small values of . As a result, the proposed values of can
still lead to achievable rates comparable to those obtained via
simulations (see the circles and dots in Fig. 9).
Example 3: Proposed Values of for Different SNRs: Let-

ting , the proposed value of as a function of the SNR is
evaluated for different values of , and is shown in Fig. 11 for

Fig. 9. as a function of SNR for MISOME channels; ,
and .

Fig. 10. as a function of SNR for MIMOME channels; ,
and .

Fig. 11. Optimal value of for MIMO channels; , .
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Fig. 12. Comparison of equal power and water-filling power allocations;
, and .

Fig. 13. Simulation and theoretical results with water-filling power allocations;
, and .

MIMOME channels. Observe that as SNR increases, the value
of drops quickly from 1 to . The rapid transi-
tion explains why the suggested values of in the high and low
SNR regimes, i.e., and 1 work well and can
nearly achieve the performance of the optimal solution of as
observed in Examples 1 and 2.
Example 4: Comparison of Equal Power and Water-Filling

Power Allocations: Let . This example com-
pares the performance of AN precoding with equal power
and water-filling power allocations. The simulation results are
shown in Fig. 12. Observe that the water-filling power alloca-
tion outperforms the equal power allocation in the low SNR
regime. The performance improvement of the water-filling
power allocation becomes less pronounced when the SNR
increases. This is not surprising because we have shown in
Theorem 3 that in the high SNR regime the secrecy rates
for the water-filling power and the equal power allocations
are bounded by the same form. Hence the theoretical results

Fig. 14. as a function of forMIMOME channels; ,
and .

Fig. 15. as a function of forMIMOME channels; ,
and .

derived for the equal power allocation can be applied for the
water-filling power allocation in the high SNR regime. Fig. 13
shows the theoretical and simulation results for water-filling
power allocation in the low SNR regime. From the figure,
we can see that the theoretical result in Theorem 3 becomes
accurate when the SNR decreases.
Example 5: Accuracy of Approximations for Moderate Num-

bers of Transmit Antennas: This example investigates the accu-
racy of the approximations when is not sufficiently large for
the asymptotics to hold. Let , which is an acceptable
number of antennas with current technology. The secrecy rates
as functions of are shown in Figs. 14 and 15, respectively.
Observe that the proposed values of can still provide reason-
able solutions in this case. Also note that when is not suffi-
ciently large, the theoretical result is no longer a lower bound
because the approximations in (16) and (45) are no longer ac-
curate. Under this situation, the lower bounds in the theorems
may be considered, instead, to be approximations.
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VI. CONCLUSION

We have analyzed the secrecy rates and derived lower
bounds for AN precoding systems in MISOSE, MISOME
and MIMOME channels. When the number of transmit
antennas is sufficiently large, e.g., in the examples,
the derived bounds are tight. When the value of is moderate,
e.g., , the proposed power allocation can still provide
a reasonable solution. Closed-form solutions for the nearly
optimal power allocation were obtained from these bounds.
We have made several interesting findings as follows: In the
low SNR regime, we should distribute zero power to artificial
noise in MISOSE, MISOME and MIMOME channels. The
corresponding rate loss due to the eavesdropper is negligible.
This result suggests that there may be no need to use AN
precoding in the low SNR regime, because the effect due to the
eavesdropper is minor. If the numbers of receive antennas at the
legitimate receiver and the eavesdropper are comparable, i.e.,

, in the high SNR regime, we should distribute half
of the power to artificial noise for both MISOSE andMIMOME
channels; the corresponding rate loss due to the eavesdropper
normalized by is 2 bits/sec/Hz. Moreover, the theoretical
results have shown that equal power and water-filling power
allocations have similar trends in the optimal values of and the
rate loss. The simulation results have confirmed the accuracy
of the theoretical results.

APPENDIX

A. Proof of Lemma 1

Using the property that the sample mean equals to the ergodic
mean, i.e., the weak law of large numbers, we have

as , where is
the th element of the vector . Since is with ,

has the distribution with two degrees of freedom.
Thus (see [23]). This proves the lemma.

B. Proof of Lemma 2

, where is the th row of .

Because the elements of are i.i.d. Gaussian, are i.i.d.

Gaussian with zero mean and variance for

, i.e., . Therefore
has the distribution with degrees of freedom.

C. Proof of Lemma 4

This approximation is proved by arguing that is approxi-
mately diagonal, i.e., . From (28) and (11), the th
diagonal element of is

(64)

From Lemma 1, as . Hence (64) can
be rewritten as (32).

The elements of the vector are i.i.d.
random variables, because the columns of are orthonormal.
Thus has the distribution with degrees of

freedom, and its mean value . Therefore,
when , we can approximate (32) by

(65)

The off-diagonal element of at the th row and the th
column is

(66)

The elements of the vector are i.i.d.
random variables, because the columns of are or-

thonormal. Hence is the sum of i.i.d. com-
plex Gaussian product variables. Applying the Central Limit
Theorem, is approximately complex Gaussian dis-
tributed with zero mean and variance , i.e.,

(67)

From (65) and (67), is frequently much greater than the
real and the imaginary parts of . For example, let

and , from (67), the probability that or
is larger than is smaller than 1%. Here,

and this value is indeed much greater than or
, which is approximately . That

is, .

D. Proof of Lemma 5

The bound in (38) can be obtained by using the Hadamard
Inequality, where the equality holds when and are both di-
agonal matrices. Using a procedure similar to that in Lemma 4,

it is easy to show that , which is distributed

with degrees of freedom. Also, is the
sum of i.i.d. complex Gaussian products. Since it is not ap-
propriate to apply the Central Limit Theorem for and
when is not sufficiently large, we use a bound rather than an
approximation in this lemma.

E. Proof of Lemma 8

The precoding and the postcoding matrices are the right and
left singular vectors corresponding to the largest singular
values. Applying the precoding at the transmitter side and the
postcoding at the receiver side, the achievable rate of the legit-
imate receiver in (3) can be expressed as [28]

(68)

where is the th eigenvalue of . Pair the non-zero
singular values as follows:

(69)
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According to [30], the smaller the value is, the less
spread the eigenvalues is. Hence we may approximate the pairs
in (69) by the pair with the maximum and the minimum eigen-
values. From Lemma 7, we approximate (69) by

(70)

where the last approximation is due to the assumption that
. The last equation in (70) leads to (45). Please note that in

(70), we have used a linear approximation for approximating the
sum of the eigenvalues. For , this linear approximation
is generally satisfactory. The reason is that fromLemma 7, when

decreases, the difference between the maximum and the
minimum eigenvalues decreases. That is, the dynamic range of
the eigenvalues decreases. Hence, when , the linear
approximation may still lead to a satisfactory result.
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