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Abstract—Continuous learning seeks to perform the learning
on the data that arrives from time to time. While prior works
have demonstrated several possible solutions, these approaches
require excessive training time as well as memory usage. This
is impractical for applications where time and storage are con-
strained, such as edge computing. In this work, a novel training
algorithm, regularized subspace approximation classifier (RSAC),
is proposed to achieve lightweight continuous learning. RSAC
contains a feature reduction module and classifier module with
regularization. Extensive experiments show that RSAC is more
efficient than prior continuous learning works and outperforms
these works on various experimental settings.

Index Terms—Continuous learning, Incremental Batch Learn-
ing, Streaming Learning

I. INTRODUCTION

Deep networks have enabled significant advances over the
last decade in many machine learning tasks, such as image
classification [1]-[3] and object recognition [4]-[9]. The suc-
cess is especially significant under the setting of supervised
learning, where the entire labeled dataset is provided to train
the deep network to complete the assigned task (i.e. image
classification). Despite the success of supervised learning, its
success is often achieved on the presumption that the tasks are
assigned all at once. This is not a realistic learning procedure
as human. As a realistic learner, human possess the ability
to continually grow the knowledge throughout the lifespan by
solving different tasks. The supervisions of those tasks from
different time span assist the establishment of human capa-
bility [10], [11]. While human benefits from the continuous
supervision and the shift of tasks from the environment, this
is not the case for deep network, which fails on solving the old
tasks when a new task is learned [12]—-[14]. Such phenomenon
has been referred as carastrophic forgetting [15]-[17] and its
potential solutions are discussed in the literature of continuous
learning [12], [14], [18], [19].

Continuous learning seeks to robustify the knowledge pre-
viously learned by deep network. By consolidating the knowl-
edge, the network can be adopted in the scenario where
data continuously streams in and achieves good performance
on new coming tasks without forgetting the old ones. The
mainstream solutions of performing continuous learning are
knowledge consolidation [20]-[23], network expansion [24]-
[27] and memory rehearsal [13], [28], [29]. While prior works
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Fig. 1. A lightweight continuous learning algorithm is designed to perform
the learning as data streams in under the constraint that both training and
inference time is short and memory usage is low.

provide several possibilities to avoid catastrophic forgetting,
the training time is usually exhaustive [14], [30] and thus
hinders the application of continuous learning in real world
scenario, where the model not only has to perform well in
the new tasks, but also has to complete the learning within a
short period to keep track of the new coming data. Moreover,
for the applications on edge computing, the memory usage
is also another concern. In this paper, we consider these
constraints and refer the problem as lightweight continuous
learning (LCL).

To address this problem, a novel algorithm, regularized
subspace approximation classification (RSAC), is proposed
which contains a transformation module and a classifier mod-
ule. For the transformation module, a lightweight feature
reduction algorithm is introduced. This is inspired by prior
works [31], [32] that discard the use of backpropagation
in deep network and substitute with a set of explainable
modules. For the classifier, the quadratic discriminant classifier
(QDC) [33] is used with the proposed regularization. By
combining these 2 modules, RSAC expedites the training
under low memory usage without sacrificing the performance.

In summary, the contribution of this work is 3 folds. First,
the current limitations of continuous learning methods, includ-
ing large memory usage and long training time, are discussed.
The problem of lightweight continuous learning (LCL) is
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then formulated and investigated. Second, we proposed a
novel algorithm, regularized subspace approximation classifier
(RSAC), for LCL problem. Finally, extensive experiments
demonstrate that RSAC achieves state-of-the-art performance
under different continuous learning settings with large com-
putation time improvement. The proposed model provides
a promising solution to the real world continuous learning
applications under various practical constraints.

II. RELATED WORK

In this section, the limitations of previous continuous learn-
ing works are discussed and the prior lightweight transforma-
tion and classification algorithms, which this work is inspired
of, are reviewed.

A. Continuous learning

The study of continuous learning seeks to mitigate the
catastrophic forgetting phenomenon [14], [21], [34], where the
classifier forgets the knowledge previously established after
training on new data. The proposed approaches can be mainly
categorized into weight consolidation [20], [35], architecture
expansion [24]-[27] and memory rehearsal [24], [25]. Their
infeasibility on applying to lightweight continuous learning
(LCL) scenario is discussed.

Weight consolidation based methods [35] impose constraint
to avoid dramatic shift on the learned weights. The constraint
encourages similar output activation between the use of the
current weights and the updated weights. This can be im-
plemented through knowledge distillation loss [20], L2 reg-
ularization [36] or updating the weight with smaller learning
rate [37]. In addition, these constraints can be explicitly ap-
plied to those weights that are important to specific task [21]-
[23]. However, these methods often suffer from insufficient
learning capacity as the flexibility is restricted by the regu-
larization [14] imposed for consolidating the old knowledge.
Moreover, methods like LwF [20] are not applicable for LCL
scenario as the training time increases proportionally with the
number of tasks.

Expanding the architecture dynamically is another type of
solutions for continuous learning and breaks the inflexibility
limitation of weight consolidation based methods. The expan-
sion can be performed by allocating a new subnetwork [24]-
[26], [38] or inserting neurons in a hierarchical manner [26].
Aside from adding completely new modules, useful neurons
from trained feature extractor can be selected by leveraging
dynamic path [27] or gating functions [39]. In addition, to
prevent overfitting of the incrementally larger network, [40]
merges neurons with similar response for downstream training.
However, these approaches are difficult to scale up in general
when new coming tasks increase dramatically and thus are not
applicable to the LCL scenario.

Rehearsal based approaches [13], [41]-[44] have demon-
strated recent success on continuous learning by training
on few examples from the previous batches, which can be
sampled from the storage with limit memory [13], [43] or
from the deep generators [28], [44]-[46] (i.e. autoencoder [47]

and generative adversarial network [48]). However, explicitly
storing past examples requires extra memory usage and the
use of deep generators needs additional training. Again, all
these prior works do not meet the requirement of LCL, which
emphasizes on short training time, memory efficient and fast
inference.

B. Lightweight transformation and classification

Despite the recent success of deep networks, it requires
large computation resources and training time, which hinders
its real world applications especially on edge computing.
These drawbacks are addressed with subspace approximation
with augmented kernels (Saak) [32] and its variant, sub-
space approximation with adjusted bias (Saab) [31]. Saak
transform is an interpretable one-pass feedforward network
based on truncated Karhunen-Loeve Transform (KLT) [49],
or PCA [50], that transforms the input domain (i.e. spatial
domain for images) into a latent domain to obtain its associ-
ated latent representation. In order to approximate functions
with higher complexity that maps between the input and the
latent representation, cascaded Saak transformations are used
together with the ReLu function in between individual Saak
transformation. However, the use of ReLu function sacrifices
partial information as the value below zero are truncated. To
minimize the loss of information, a negative counterpart of the
kernel vectors from truncated KLT is introduced, such that all
the information will be preserved after projecting on the kernel
vectors from truncated KLT and its negative counterpart.

Despite the advantages of Saak transform, the size of latent
representation will grow exponentially with more cascade of
Saak, due to the use of additional kernel vectors. To overcome
this drawback, subspace approximation with adjusted bias
(Saab) [31] transformation adds a computed bias term on each
of the projection on KLT kernel vectors. Thus, Saab not only
inherits the advantages of Saak transform, but further improves
the memory efficiency. Unlike Saak and Saab, the proposed
regularized subspace approximation classifier (RSAC) replaces
the augmented kernels and the bias term with a robust classifier
module to overcome the sign confusion problem in [32].

Saak transform and Saab transform have demonstrated com-
petitive results compared to deep neural network on different
domains, including image classification [31], [32], [51], [52],
3D object classification [53] and texture analysis [54]. More-
over, they can be applied in semi-supervised learning [55] and
image compression [56] and demonstrate robustness toward
adversarial attacks [57]. Inspired by the characteristic of these
transformations in terms of memory efficient, lightweight
computation and success in multiple domains, we explore
whether the same benefits ensue in the scenario of lightweight
continuous learning with the proposed regularized subspace
approximation classifier.

III. METHOD

In this section, the proposed algorithm regularized subspace
approximation classifier (RSAC) for lightweight continuous
learning (LCL) is introduced.
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Fig. 2. The flow chart of the proposed RSAC architecture for lightweight continuous learning. During training stage, the eigenvectors of the KLT transform
will be stored in the vector bank after learning. During inference stage, the dimension of data from each class will be reduced through KLT transform. The

reduced feature will then be classified with the QDC classifier.

A. Preliminary formulation

Given a labeled dataset Dy, = {4, vi}Y ;, where z; € R¢
is an image, Xy, = {x;}¥| is a full image set, y; € Viwr =
{1...C%} is a full label set and C is the number of classes.
A classifier F' is trained to solve the assigned task originated
from the dataset Dy,y;. Let T be the set of tasks to be solved
by the classifier F'. For a classification problem on image set
X = {z;} and label set Y = {y;}, the task ¢(X,)) is defined
to classify an image x in X C Ay to the target label set
Y C YVyuu. In other words, the classifier aims to maximize
the posterior class probability

_ Pxy (z]c) Py (c)
P(X)

which can be expressed with the likelihood Px |y (z|c) and
class prior Py (¢) with Bayes rule [58].

For the supervised learning scenario, the entire labeled
dataset are used during the training procedure, where 7 =
{t1(Xfuur, Yyun)} as there is only a single task. While for
continuous learning with M different tasks, the task set is
defined as

Py x (c|z) 9]

b

M

T = {t; (X5, V) }i=1 2
and satisfies the constraint that
M
X,NX; =0, i#j, U-Xj:Xfull- 3)
j=1

Correspondingly, the label set has to satisfy J; N); = @ and
M

U Vj = Vsuu- Note that the general definition of task set 7
j=1

can be applied to supervised learning by setting M = 1.

B. Deep continuous learning

While the classifier F' can be implemented in many different
ways, one of the common manners is to leveraged the deep
neural network model. Under the general definition of task set
T, the classifier can be formulated as ' : R¢ — RC. This is
implemented by the combination of a feature extractor fy(x)

of parameters # and a softmax regression layer that predicts
the posterior class probability as

ew?ﬂ; (z)
2571 Wi fo(z)’

where F,. denotes the c'* entry of classifier F, w,. is the
vector of classification parameters of class c. However, the
learning of # is often not transparent and fails to yield an
explainable result [S9]. Moreover, the learning of 6 requires the
backpropagation procedure, which is computation expensive
and relies on great amount of computing resources. All these
drawbacks impede the advance of lightweight continuous
learning (LCL) in real world applications.

Fe = Py|x(clz) = “4)

th

C. Lightweight continuous learning

To avoid high computation cost, regularized subspace ap-
proximation classifier (RSAC) is proposed in this section
as a solution for lightweight continuous learning (LCL) and
contains 2 modules, including a feature reduction module and
a classifier module.

1) Feature reduction module: Feature reduction is a critical
stage in entire LCL pipeline, as simply taking raw image
r € R? as input to the classifier will lead to high computa-
tional cost. For deep continuous learning, the feature reduction
is performed by the feature extractor f of (4), while the
KLT transformation is leveraged in lightweight continuous
learning, inspired by the lightweight Saab transformation used
in supervised learning. KLT is established on the covariance
matrix . of class ¢ computed by

®)

and

(6)
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where N, is the number of data belongs to class ¢, A. is a
diagonal matrix with the eigenvalue o7 as the j* entry and Q..
is a d X d orthonormal matrix, where the jth column vector is
the eigenvector ¢J. The feature reduction is then implemented
by projecting on the top k eigenvectors in (). correspond to
the k largest eigenvalues in A., which are selected as

25:1 al

Z?:l oe
where ¢ is a power threshold to guarantee that sufficient
information is preserved. Let QC be a d x k matrix, where
the column vectors are the concatenation of k selected eigen-
vectors, and A, is a kx k diagonal matrix with the top k largest
eigenvalues in A.. The resulting latent representation after
projection is denoted as f(z) = Q7. Note that unlike the
feature extractor f in (4), no parameter is needed to be learned
in feature reduction module. Moreover, the power threshold ¢
can be used to control the number of eigenvectors stored in
the vector bank with limited memory buffer, as shown in the
training stage of Fig 2. With such projection scheme, the input
image x can be represented with f(z) € R*.

2) Classifier module: To discard the learning of numerous
parameters in deep neural network, the relationship of (4) and
(1) is investigated. We then note that maximizing the class
posterior probabilities of (1) can be reformulated as

> 1, (7

max Py |x (c|lr) = max Px)y (z|c) Py (c), (3)

by dropping the denominator P(z) in (1), since the distribution
of the input data X is independent of the learning. In general,
the class conditional distribution Pxy (z|c) can be modeled
with any function in the exponential family distribution [60],
ie.

Pxy(zly) = q(z)e < (@)>—d(wy) 9)

and
P et 10
v (y) = m7 (10)

where w,, is a canonical parameter, v(x) is a sufficient statistic,
¢(wy) is a cumulant function and ¢(x) is a underlying mea-
sure [60]. While, in principle, any function in the exponential
family can be leveraged, a simple Guassian distribution is
considered in this work. The likelihood that operates on the
latent representation f(z) € R* from feature module is then
modeled with

Py (f(x)le) = G(f(2); fie, 2e)
L 30— (@) )

(2m)d/2 (5|
(11)
Similarly, the class prior can be computed as
N,
Py(c)= = (12)
Z]‘:1 Nj

Note that the computation of fi. and 3. of class ¢ is similar
to (5) and (6), but operates on the latent representation f(x).

Algorithm 1 Pseudocode of RSAC
1: EigList:= []
2: while Training do
3:  while Data X, from new class ¢ stream in do
Apply feature reduction module in Sec. III-C1.
Append the k eigenvectors of class ¢ selected from
(7) to EigList.
end while
end while
while Testing do
for all test images = do
10: Apply feature reduction module in Sec. III-C1.
11: Perform QDC of (14) with regularization of (16) on
the latent feature.
12:  end for
13: end while

AN~

0L 23D

As shown in the inference stage of Fig 2, an input example
2 is mapped to the latent representation f(x) with the fea-
ture reduction module and then classified by computing the
maximum a posteriori as

argznaXPy|X(c|f(x)) = argznaXPX‘y(f(a:ﬂc)Py(c).

13)
By substituting the modeling of (11) and (12) into (13), it can
be re-written 1n log scale as

arginaxln(PmX(C‘f(I)))
= argznaxln(Px\y(f(l’)‘c)) + In(Py (c))
1

N, )
Sl =7,

(14)

= argmaxin(=—) = 3(7(@) = 40) "5 (F(2) - fie) + in

This is referred as quadratic discriminant classifier (QDC) in
the following.

By combining the feature and classifier module, the overall
training scheme is referred as subspace approximation classi-
fication (SAC). As summarized in Algorithm 1 and visualized
in Fig.2, SAC takes a task from the LCL problem as input.
Given a task ¢; in (2), the feature reduction module maps the
inputs associated to ¢; into a k dimension latent representation,
where the label dependent eigenvectors are learned and stored
vector bank. During inference, the feature module is again
applied to the input and the output latent representation is
then passed through the QDC classifier for obtaining final
prediction.

3) Efficient learning with regularization: While SAC pro-
vides an efficient classification solution for the LCL problem,
it can be problematic, because the inverse of f]c in (11) is
an ill-defined problem numerically if it is close to a singular
matrix. To solve the problem, the relationship between 3.
and 3, is revisited. By leveraging the latent representation
f(z) = QTx € R* defined in Sec. III-C1, the covariance of
the latent representation can be reformulated as

Se = Cov(f(z)) = QF Cov(z)Q.

= QZZCQC = QZQcAcQch = Ac- (15)
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TABLE I
COMPARISON WITH BASELINES UNDER CLASS INCREMENTAL LEARNING SCENARIO.

Datasets (Accuracy) Datasets (Training Time (sec))
Methods Mnist KMnist Fashion Mnist Mnist KMnist Fashion Mnist
DGR [28] 90.44+1.56  69.25+£2.94 74.831+5.50 315.9942.25 748.75£51.17  760.21+£21.72
DGR-+distill [20], [28] 92.31+£0.74  64.42+1.12 76.031+4.12 314.12+12.79  819.524+14.52 800.81£3.69
EWC [21] 20.45+1.15  19.5440.12 19.9740.02 398.86+11.04  719.894+21.95  697.24453.39
Online EWC [61] 20.69+1.53  19.5440.12 19.9740.03 371.87+£12.35 665.04+3.40 692.49+£29.20
iCaRL [13] 93.2440.70  70.83+2.78 79.611+0.79 200.161+9.83 468.38+4.98 466.60+11.09
LwF [20] 20.984+0.85 20.16%0.24 19.4242.54 198.40+9.09 495.62431.48 499.4948.77
RtF [46] 93.75+1.28  66.16+£3.06 74.11+4.82 253.37+9.22 639.66+25.56  678.42+34.04
SI [22] 19.85+0.10  19.5340.09 19.9740.02 194.16+87.6 503.72+5.15 498.37+3.28
CNDPM [62] 93.54+0.13 74.35+1.4 44.62£2.1 > 3600 > 3600 > 3600
Saak [32] 95.21 76.25 73.51 > 3000 > 3000 > 3000
[ Ours [ 9559 7735 8032 | 5.90 5.72 5.48 ]
Mnist continuous learning approaches, where 5 tasks are considered
by separating the dataset into pairs (i.e. grouping class (0/1),
(2,3) and etc.). For lightweight continuous learning approaches
(i.e. Saak and RSAC), , we learn each class individually, as
‘ these methods are free from the restriction of multi-classes
KMnist training. After all training data are observed, the classification
W accuracy is computed as Ep, , [lj==,], where 1) is the
Kroneker delta and ¢ and y are the predicted class and ground
truth class respectively. Under this evaluation metric, nine
different continuous learning baselines are compared. The
FashionMnist official code ! of CNDPM [62] is adopted and the public

Fig. 3. Visualization of the examples in 3 datasets.

To avoid singularity, we proposed to add a regularization on
>; of (11) as

f}é:f}cha*I:f\cha*I, Yee )y (16)

when singular matrix occurs and this is referred as regular-
ized SAC (RSAC). The use of RSAC not only avoids the
singularity, but also simplifies the computation of (11) as
the inversion of f)’c is also a diagonal matrix composed of
the eigenvalues from A.. Note that RSAC does not require
large number of parameter learning and is more computation
and memory efficiency for the lightweight continuous learning
applications.

IV. EXPERIMENT

In this section, Mnist [63], KMnist [64] and FashionM-
nist [65] are evaluated in terms of averaged classification
accuracy over all classes. Examples from all three datasets are
visualized in Fig. 3. For all three datasets, there are 10 classes,
60000 training images and 10000 testing images. Unlike
KMnist and FashionMnist, Mnist has a slightly imbalance data
distribution across classes.

To compare the performance in class incremental learning
setting, the standard evaluation protocol is adopted for the deep

available code® for the rest of the baselines is used. Note
that while the original architecture of CNDPM is used, the
rest of the baselines are implemented based on multilayer
perceptrons (MLP) as backbones. In addition, although the
Saak architecture is not designed specifically for continuous
learning scenario, it can be compared with slight modification
of its official code®. To avoid the memory explosion, we
implement three stages Saak transform with transformation
sizes 8 x 8, 2 x 2 and 2 x 2, and use KLT transform and
regularized QDC for classification in order to fit the continuous
learning scenario. The initial image size is padded to 32 x 32,
and sequentially transforms into size 4 x 4, 2 x 2 and 1 x 1
in the horizontal and vertical dimension for each stage. For a
fair comparison, the number of feature selected is the same
between RSAC and Saak. Note that in all experiments, the
regularization hyperparmeter o of (16) in RSAC is set as 0.4.

A. Comparison with continuous learning baselines

The continuous learning baselines are compared from the
perspectives of classification accuracy and training time, as
these 2 factors are critical to perform lightweight continuous
learning (LCL). As shown in left of Table I, the proposed
framework outperforms the continuous learning baselines both
in terms of accuracy and training time. The accuracy gain
is more than 0.38%, 1.10% and 0.71% on Mnist, KMnist
and FashionMnist respectively. The corresponding confusion
matrix of the proposed architecture is visualized in Fig. 4.

Thttps://github.com/soochan-lee/CN-DPM
Zhttps://github.com/GMvande Ven/continual-learning
3https://github.com/davidsonic/Saak-Transform

6684

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on April 26,2022 at 10:08:30 UTC from IEEE Xplore. Restrictions apply.



Mnist KMnist Fashion Mnist

800

600

... 400

200

"u

Predicted value

Groundtruth value
Groundtruth value
Groundtruth value

Predicted value Predicted value 0

Fig. 4. Confusion matrix of Mnist, KMnist, FashionMnist from the QDC
classifier.

In addition to the accuracy gain, the training time of pro-
posed framework is significantly smaller than those baselines
implemented with deep network, as shown in right of Table I.
Such efficiency is attributed to the discard of backpropagation
during training and the prevention of memory explosion.
Note that most of the continuous learning baselines, besides
CNDPM, are implemented with 4 layers MLP in order to
provide more competitive baselines, but the proposed frame-
work still beats those baselines with significant margin without
sacrificing the accuracy. The results presented in Table I
demonstrate the efficiency and effectiveness of the proposed
algorithm and suggest that the proposed framework is a more
suitable solution for LCL problem.

B. Ablation study

In this section, the ablation study of the proposed framework
is conducted by investigating the effect of power threshold ¢ of
(7) and the number of training data provided to the proposed
framework.

1) Effect of power threshold: From Table II, it can be
observed that the accuracy saturates when the power threshold
t is around 0.95 for all three datasets. The benefit of adding
more eigenvectors is marginal when ¢ > 0.95. Moreover,
when adding eigenvectors associated with small eigenvalues,
the computation of QDC (14) will often lead to numerical
error as the covariance matrix is not invertible. The proposed
regularization of (16) can avoid such ill-defined inverse matrix
with minor drop of accuracy.

Furthermore, while the input has 784 dimension, it is not
necessary to store all 784 eigenvectors in the vector bank. In-
stead, the best accuracy reported in Table II shows that storing
less than 200 eigenvectors per class is sufficient to achieve
competitive performance. With such memory efficiency, it
allows the edge device to classify more data from more classes
under same amount of memory budget.

2) Effect of dataset size: It is known that the deep neural
network requires a large number of labeled data for learning
a good classifier [66]. The dependency of large number of
labeled data is investigated on the proposed method, as shown
in Fig. 5. Unlike the heavy dependency of neural network
based methods, the proposed framework is data efficiency as
the accuracy remains fairly stable when more than 500 (800)
images per class are used, which only requires less than 15%,

TABLE II
DIFFERENT POWER THRESHOLDS ¢ OF (7) ARE EXPLORED. EACH
THRESHOLD CORRESPONDS TO A SPECIFIC k VALUE IN (7). THE k VALUE
ASSOCIATED TO THE BEST ACCURACY ARE REPORTED.

Power threshold ¢ Mnist KMnist Fashion Mnist
k acc k acc k acc
0.8 31 67.75 64 61.30 26 64.90
0.9 68 93.22 126 76.16 77 73.98
0.95 121 9541 211  77.13 156 79.74
0.96 141 9543 243 76.87 185 80.25
0.97 168 9543 285 7484 224 73.56
0.98 206 91.66 346 75.09 278 73.95
[ Best 150 9559 192 7735 183 80.32 ]
TABLE III
COMPARISON WITH SAAK UNDER DATA INCREMENTAL LEARNING
SCENARIO.
Methods/Datasets ~ Mnist ~ KMnist ~ Fashion Mnist
Saak [32] 95.59 77.00 78.15
Ours 95.92 80.48 80.24

10% of the available training data in Mnist (KMnist). For a
more challenging dataset Fashion Mnist, merely 50% of the
available training data is needed to achieve competitive results.
This indicates that the proposed framework is more suitable
in the application where training data is scarce.

C. Data incremental continuous learning

Inspired by the observation in the ablation study that the
proposed method is less sensitive to the number of training
data, the proposed method is further evaluated under a novel
continuous learning scenario, where data from same class
does not stream in the same time stamp. We refer this as data
incremental continuous learning. Note that this is different
from the typical continuous learning settings discussed in
Sec. III-A, where data from same class always arrive at
the same time stamp. Under the data incremental continuous
learning setting, the data in each time stamp contains 10000
images from all classes and the accuracy is measured after
learning on all training data. Since most prior works in

90 4

80+

70 1

Accuracy rate

60

—&— Mnist
—&— KMnist
—&— Fashion Mnist

] 1000 2000 3000 4000 5000
Images per class

Fig. 5. Ablation study on the number of data needed for training a good LCL
classifier. The accuracy saturates after the use of 15%, 10% and 50% images
for Mnist, KMnist, Fashion Mnist, respectively.
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continuous learning literature does not fit into this scenario, the
only comparable baseline is SaaK [32]. As shown in Table III,
the proposed method beats SaaK for all 3 datasets. Moreover,
the gain increases from 0.33% of simple dataset (i.e. Mnist)
to 2.09% of a more challenging dataset (i.c Fashion Mnist).

V. CONCLUSION

In this paper, the underlying disadvantages of current con-
tinuous learning algorithms are discussed, including the slow
training time, memory inefficiency and dependency on large
number of training data. All factors harm the usability of
continuous learning algorithms in the real world application,
where the streaming data is limited and the training time is
critical. As the result, the importance of lightweight continuous
learning problem is investigated with the proposed algorithm
regularized subspace approximation classifier (RSAC). RSAC
inherits the advantages of previous lightweight transformation
with new architecture to match continuous learning scenario.
RSAC also consists a quadratic discriminant classifier (QDC)
with addition regularization to prevent ill-defined condition.
Moreover, the elaborate design of RSAC reduces the cost of
memory storage and enables the classification to be perform
in an efficient manner. Extensive experiments demonstrate
the performance as well as training speed of the proposed
framework. We hope this work will inspire the focus of
lightweight continuous learning problem in the literature.
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