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Abstract— A maximum likelihood estimator (MLE) based
on Expectation Maximization (EM) method is presented to
jointly estimate the carrier frequency offset (CFO) and the
channel of each user in uplink OFDMA systems. The pro-
posed MLE distinguishes itself from existing methods by its
applicability to any arbitrary carrier assignment schemes.
The proposed MLE achieves high computational efficiency
by transforming a multidimensional maximization problem
into a number of substantially smaller separate maximiza-
tion problems. Computer experiments have been conducted
to confirm the effectiveness of the proposed estimators in es-
timation accuracy and robustness against the near-far effect.

I. Introduction

Being effective in combating multipath mobile wireless
channels, the Orthogonal Frequency Division Multiple Ac-
cess (OFDMA) technology has attracted much attention
recently as one of the most promising techniques for broad-
band wireless communications. An OFDMA system di-
vides available carriers into groups, called subchannels, and
assign one or multiple subchannels to multiple users. Two
critical issues in the design of an uplink OFDMA system
are investigated in this work. They are carrier frequency
offset (CFO) estimation and channel estimation. Similar
to OFDM, OFDMA is sensitive to the CFO between the
transmitter and the receiver. Inaccurate CFO estimation
results in the loss of orthogonality among carriers, thus
leading to severe performance degradation. In addition,
channel estimation for each user in the system is another
indispensable task for achieving high-rate data transmis-
sion. These two tasks are especially challenging in uplink
OFDMA because of the existence of multiple CFO’s and
transmission channels.

The CFO estimation for uplink OFDMA has been stud-
ied by researchers, e.g. [1–4]. However, the methods pro-
posed in [1–3] focus on either the sub-band carrier assign-
ment or the interleaved carrier assignment. Suppose that
there are K users in the system. For the sub-band car-
rier assignment, the system divides carriers into K consec-
utive subchannels and assigns each subchannel to one of
the K users. For the interleaved carrier assignment, car-
riers j, K + j, 2K + j, · · · are assigned to user j, where
1 ≤ j ≤ K. The recent trend of OFDMA favors a more
flexible carrier assignment scheme. An example is given in
Fig. 1 [5], where each user can select whatever carriers that
are available at a particular time instance. Since there is
no rigid association between carriers and users, the gener-
alized carrier assignment scheme provides more flexibility
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than the sub-band and the interleaved schemes. This will
offer a significant advantage, when dynamic resource allo-
cation or adaptive modulation is to be widely used in the
near future. Recently, Morelli [4] proposed a synchroniza-
tion method to handle the generalized assignment scheme
by assuming that all users are already synchronized in time
and frequency except for one new user. This assumption
reduces the complexity of the problem dramatically since
the interference from already-synchronized users can be to-
tally eliminated. However, this assumption may not hold
in practice.

Subchannel 1 Subchannel 2 Subchannel 3

Frequency

Fig. 1. Illustration of a generalized carrier assignment scheme.

The main contribution of this work is the proposal of a
maximum likelihood estimator (MLE) to jointly estimate
CFO and channel for all users simultaneously regardless of
the underlying carrier assignment scheme. The proposed
estimator achieves high computational efficiency by using
the Expectation Maximization (EM) algorithm to reduce
the complexity of high-dimensional search for the optimal
solution. The proposed scheme demands that all users send
one pilot FFT block in the time domain in the beginning
of the uplink transmission process and, consequently, it is
applicable to any subcarrier assignment schemes. Since a
similar uplink transmission structure has been specified in
IEEE802.16a (Fig.128av of [5]), this requirement should
not be a serious constraint in practical OFDMA systems.

II. Proposed Uplink OFDMA Model

Consider an OFDMA system with N carriers as depicted
in Fig. 2. The signal received by the base station (BS) is
a superposition of contributions from K active users. The
nth block sent by the kth user in the frequency domain is
denoted by sk(n), where k ∈ {1, · · · ,K}. sk,j(n) can be
non-zero if and only if the jth carrier is assigned to the kth
mobile user, for j ∈ {0, · · · , N − 1}. The corresponding
time-domain output vector is equal to

xk(n) = F Hsk(n),
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where F is the DFT matrix and (·)H stands for the Her-
mitian of a matrix. A cyclic prefix (CP) of length Ng is
inserted in xk(n) to form uk(n) of length Q = N + Ng

to combat the dispersive channel before uk(n) is transmit-
ted to the channel. Let hk be the kth user’s discrete-time
composite channel impulse response (including the shaping
filter) of order Lk. We define the corresponding channel
impulse response vector as

hk
def= [hk(0), hk(1), · · · , hk(Lk)]T .
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Fig. 2. The OFDMA discrete-time equivalent baseband model.

In the presence of CFO and timing errors, the output of
the BS receive filter is given by

r(m) =
K∑

k=1

{
ejωkm

Lk∑
l=0

hk(l)uk(m − l − µk)

}
+ v(m),

where ωk = 2π∆fk/Q is the normalized angular frequency
offset with respect to the carrier spacing for the kth user,
v(n) is the zero-mean white Gaussian noise and µk is the
kth user’s integer-valued timing error as depicted in Fig.
3. Note that the fractional timing error is indistinguishable
from the phase of the channel impulse response and has
been incorporated in hk [4].
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Fig. 3. Illustration of multipath and timing errors.

In the BS, the serial-to-parallel (S/P) conversion trans-
forms r(m) into r(n). After removing the CP from r(n),

we form y(n). Define Lmax
def= max {µk + Lk}, ∀k. We

assume Ng ≥ Lmax, which generally holds for preamble
symbols in OFDMA systems [6]. It implies the following
two conditions. First, each received block r(n) contains
only intersymbol interference from its immediate previous
block. Second, as a consequence of the first condition, y(n)
contains no intersymbol interference after the CP removal.
These two conditions can be easily proved by extending the
results about OFDM given in [7].

The received signal y(n) can be written in matrix form
as

y(n) =
K∑

k=1

ejω̄kΓ(ωk)Ak(n)︸ ︷︷ ︸
G(ωk)

hk,µk
+ v(n), (1)

where

Γ(ωk) = diag
(
1, ejωk , · · · , ej(N−1)ωk

)
, (2)

[Ak(n)]p,q = [uk(n)]p−q , 1 ≤ p ≤ N, 1 ≤ q ≤ Ng,(3)

hk,µk

def=
[

0T
µk×1 hT

k 0T
(Ng−µk−Lk)×1

]T

.(4)

and where ω̄k = ωk (nQ + Ng) is the phase term associated
with n and [uk(n)]l, −Ng+1 ≤ l ≤ N−1, is the lth element
of uk(n).

Assume that all users send out pilot symbols on the car-
riers assigned only to themselves in the nth block simul-
taneously. Therefore, all Ak(n)’s are known to the BS.
We omit all functional dependency on n for the following
discussion. Also, we show In the appendix that the signal
model proposed in Eq. (1) is equivalent to that given in [4]
under the assumption of Ng ≥ Lmax. The major difference
between Eq. (1) and the signal model in [4] lies in the tim-
ing error modeling. By implicitly embedding µk in hk,µk

,
Eq. (1) has the advantage of decoupling the estimation
of ωk from the estimation of µk and hk. This decoupled
structure is helpful in simplifying the MLE derivation.

Please note that the position of the first non-zero element
in hk,µk

indicates the timing error associated with the user.
The parameter Lk can be found by counting the number
of non-zero elements in hk,µk

. Also, Eq. (1) is applicable
to any underlying transmission channel models and timing
errors as long as Ng ≥ Lmax.

III. Derivation of EM-Based MLE

Since v is assumed to be the zero-mean additive white
Gaussian noise (AWGN), the least-squares solution is also
the maximum likelihood (ML) solution. The maximum
likelihood estimates of ωk and hk,µk

, k = 1, · · · ,K, are
given by minimizing the following cost function:

min
ω,h



∣∣∣∣∣y −

K∑
k=1

G (ωk) hk,µk

∣∣∣∣∣
2

 , (5)

where

ω = [ω1, ..., ωK ]T ,

h =
[
hT

1,µ1
· · ·hT

K,µK

]T
.
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Instead of directly solving the multi-dimensional opti-
mization problem as given by Eq. (5), we proposed to
adopt an EM-based approach to simplify the optimization
problem. The EM algorithm was first studied for param-
eter estimation of superimposed signals in [8]. The idea
has been applied to channel estimation for OFDM in [9].
Based on the same essence of [8,9], EM-based methods are
proposed in this section to decompose the computationally
intensive multi-dimensional optimization problem in Eq.
(5) into K separate ML optimization problems.

A. Conventional EM

Let us first consider the conventional EM method. We
view y as the observed data and the “complete” data dk,
k = 1, · · · ,K, is given by

dk
def= G (ωk) hk,µk

+ vk, (6)

where v =
∑K

k=1 vk. Thus, y =
∑K

k=1 dk, where dk is
the component in the received signal y contributed by the
kth user. The EM algorithm starts with an arbitrary initial
guess ω̂(0) and ĥ

(0)
k,µk

. For the ith iteration, the parameters
are updated by the following procedure.

E-Step: For k = 1, · · · ,K, compute

b̂
(i)
k = G

(
ω̂

(i)
k

)
ĥ

(i)
k,µk

, (7)

d̂
(i)
k = b̂

(i)
k + βk

[
y −

K∑
k=1

b̂
(i)
k

]
, (8)

where βk’s are chosen such that
∑K

k=1 βk = 1.
M-Step: For k = 1, · · · ,K, compute[
ω̂

(i+1)
k , ĥ

(i+1)
k,µk

]
= arg min

ωk,hk,µk

{∣∣∣d̂(i)
k − G (ωk) hk,µk

∣∣∣2} . (9)

Using the least squares solution of hk,µk
, the optimiza-

tion problem in Eq.(9) can be achieved in two steps:

ω̂
(i+1)
k = arg min

ωk

{∣∣∣d̂(i)
k − G (ωk) P (ωk) d̂

(i)
k

∣∣∣2} ,

ĥ
(i+1)
k,µk

= P
(
ω̂

(i+1)
k

)
d̂

(i)
k , (10)

where

P (ωk) =
(
GH (ωk) G (ωk)

)−1
GH (ωk) . (11)

The advantage of this algorithm is that its complexity
grows linearly with the number of users and the maximiza-
tion step can be accomplished in parallel for all K users .
However, the EM algorithm given above suffers from two
drawbacks. The first one is the slow convergence rate since
its convergence rate is inversely related to the Fisher infor-
mation of the complete data space [10]. The second one is
the introduction of free variables βk’s. Inappropriate values
of βk’s will lead to not only an even slower convergence rate
but also possible convergence to a local stationary point [8].
So far, no theoretical analysis on the selection of βk’s has
been reported yet.

B. SAGE Algorithm

The SAGE algorithm [10] was proposed to overcome the
drawbacks of the conventional EM algorithm. Instead of
optimizing over all “complete” data dk’s simultaneously
in each iteration, we consider one dk per iteration, for
k = 1, · · · ,K sequentially, and associate all noise with the
current dk [9]. The complete SAGE algorithm in the ith
iteration is given below. For i ≥ 1, we have the following
two steps.

E-Step: For k = 1, · · · ,K, compute

b̂
(i)
k = G

(
ω̂

(i)
k

)
ĥ

(i)
k,µk

, (12)

d̂(i)
m = b̂(i)

m +

[
y −

K∑
k=1

b̂
(i)
k

]
, (13)

where m = (i mod K).
M-Step: Compute[
ω̂(i+1)

m , ĥ(i+1)
m,µm

]
= arg min

ωm,hm,µm

{∣∣∣d̂(i)
m − G (ωm) hm,µm

∣∣∣2} .

(14)
For k �= m,[

ω̂
(i+1)
k , ĥ

(i+1)
k,µk

]
=
[
ω̂

(i)
k , ĥ

(i)
k,µk

]
. (15)

Eq. (14) can be optimized in two steps as shown in
Eq. (10). For the M-step, we see that SAGE is more
computationally efficient since it updates only one user’s
parameters at each iteration.

C. Initialization Strategies

It is a well-known fact that the EM-based algorithms do
not guarantee to converge to the global maximum point
if there exist multiple stationary points. In that case, the
EM-based algorithms may converge to different maxima
depending on the initial conditions. Three strategies are
proposed to initialize ω̂(0) and ĥ

(0)
k,µk

for the proposed EM-
based ML estimator as given below.
1. Each ω

(0)
k is initialized to its expected value, ω

(0)
k = 0,

since we assume that ωk is a zero-mean uniformly dis-
tributed random variable. Then, we can set ĥ

(0)
k,µk

by sub-

stituting ω
(0)
k to Eq. (10).

2. We use the MLE proposed for the single-user OFDM in
[11]. By regarding all other users’ signals as noise, we make
a rough guess on ω

(0)
k and ĥ

(0)
k,µk

using Morelli’s method
sequentially, for k = 1, · · · ,K. However, since Morellis’
method was originally developed for the single-user OFDM
system, the estimate provided by this method is not accu-
rate due to the interference from other users.
3. We can use the genetic algorithm (GA) to examine the
whole multi-dimensional likelihood function given by Eq.
(5). Since GA starts with different initial values and pro-
duces generations with larger likelihood values, the initial
values obtained via GA are more likely to be close to the
global optimal point. However, GA is often computation-
ally demanding, which depends on its structure.
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IV. Simulation Results

The OFDMA system used in our simulation is a scaled-
down version of IEEE802.11a. We consider an OFDMA
system with N = 64, Ng = 16 and K = 2, 3. Each user
has 20 subcarriers randomly assigned. The channel of each
user is different but all are modeled as the typical urban
channel of the European GSM system, which is the same
as that given in [11, 12]. The channel model has six paths
and has the following channel response

h(k) =
5∑

i=0

AigT (kTs − τi − t0),

where t0 = 3Ts is the timing phase, gT is a raised
cosine rolloff filter with a rolloff factor 0.5, Ai and τi

are the attenuation and the delay parameters of the
ith path. Ai’s are independent zero-mean Gaussian
random variables with variances {−3, 0,−2,−6,−8,−10}
in dB. The normalized delays τn/Ts are given by
{0, 0.054, 0.135, 0.432, 0.621, 1.351}. Under these channel
parameters, h(k) only has significant values for i ≤ 7, which
means Lk = 8 in our signal model. Also, we introduce a
random timing error, 0 ≤ µk ≤ 8, for each user. In each
simulation realization, a random ∆fk is generated from the
interval (−0.1, 0.1].

We evaluate the performance of the MLE based on the
mean squared errors (MSE) of the parameter estimation
for user #1. We define SNR as SNR = σ2

1
σ2

v
, where σ2

1 is
the mean power of the received signal from user #1 and
σ2

v is the mean noise power. For this SNR definition, the
asymptotic CRB of ∆f1 for a single-user OFDM system is
given by [12]

asCRB(∆f1) =
1

4π2N3

6σ2
v

hH
1,µ1

R1h1,µ1

, (16)

asCRB(h1,µ1) =
σ2

v

N

[
R−1

1 +
3h1,µ1h

H
1,µ1

hH
1,µ1

R1h1,µ1

]
, (17)

where R1 is the covariance matrix of the received signal
from user #1. It can be shown that the asymptotic CRB
of ∆f1 for multi-user OFDMA can be approximated by
Eq. (16) if we assume all the cross-terms of any two users’
signals are zero. Therefore, Eq. (16) presents the lower
bound in the ideal case of OFDMA systems. Details of the
proof will be given in our future report.

For comparison, we show the performance of another it-
erative MLE recently proposed in [13]. This MLE utilizes
the alternative maximization (AM) technique to reduce the
complexity of the multi-dimensional optimization problem.
While the conventional EM method updates each user’s
parameters in a parallel fashion in one iteration, the AM
MLE sequentially updates one user’s parameters based on
the most recent updates of other users’ parameters.

A. Example 1 (the near-far effect)

In this example, we consider the two-user case (K = 2),
where user #1’s signal is lower than user #2 by 3dB. We

performed 200 Monte-Carlo runs. The first initialization
strategy in Sec. III-C is used for all proposed MLE’s. The
results are shown in Fig. 4. The black line with asterisks
shows the performance of Morelli’s MLE proposed for the
single-user OFDM [11]. It is evident that Morelli’s method
is overwhelmed by the strong interference from user #2
that decreases the effective SNR to less than −3dB. On
the other hand, all the EM-based and the AM MLE’s per-
formed well in this case. They all give similar performance,
which is about 2 dB worse as compared with the asymp-
totic CRB given by Eq. (16).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

SNR (dB)

M
S
E
 
(

∆ 
f 1
)

Morelli

EM

Sage

AM

mean(asCRB)

Fig. 4. The CFO estimation performance in the near-far environ-
ment.

Fig. 5 shows the convergence behavior of three MLE’s
for SNR =30dB. The AM MLE has the fastest convergence
rate due to the sequential and accumulative updates in
each iteration. The stair-like convergence curve of SAGE
is due to the fact that user #1’s parameters are updated
for every K = 2 iterations. As expected, the conventional
EM method suffers from slow convergence.
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Fig. 5. The convergence behavior of three MLE’s for SNR=30dB.

Due to the limit of space, channel estimation results are
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not shown here. However, since ĥk,µk
is solely determined

by ω̂, it is to conclude that the proposed estimators should
achieve more accurate channel estimation based on ω̂ ob-
tained above.

B. Example 2 (effect of K and N)

In this example, we examine the influence of the user
number (K) and the number of carriers N on the CFO es-
timation performance. The results are shown in Fig. 6. We
simulated the three cases with (N, k) = (64, 2), (64, 3) and
(128, 2). In this example, all users have the same signal
power level. The amount of interference from other users
increases as the number of users increases. As a result,
the performance of CFO estimation decreases when K in-
creases from 2 to 3 for N = 64. On the other hand, when
the total amount of interference is a constant (K = 2), a
larger N will enable the estimator to spread the interfer-
ence to a higher-dimensional space. As a result, the perfor-
mance of the CFO estimator improves as N increases from
64 to 128 for K = 2.
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Fig. 6. Influence of K and N on the CFO estimation

V. Conclusion

An EM-based maximum likelihood estimator (MLE)
that is capable of jointly estimating CFO and channel for
each user in uplink OFDMA was presented in this work.
The proposed algorithm is attractive owing to its low com-
putational complexity and general applicability to flexible
subcarrier assignment schemes. The robustness of the pro-
posed MLE against the near-far effect was demonstrated
by computer simulation results.

VI. Appendix

In this section, we show that Eq. (1) is equivalent to
the signal model reported in [4] under the assumption of
Ng ≥ Lmax. We start from the received signal from the
kth user by BS. From Eq. (1), we have

yk =
K∑

k=1

ejω̄kΓ(ωk)Akhk,µk
+ v.

By expanding Ak and hk,µk
according to their definitions

in Eq. (3) and Eq. (4), respectively, we have

Akhk,µk

=




u0 u−1 · · · u−Ng+1

u1 u0 · · · u−Ng+2

...
...

. . .
...

uN−1 uN−2 · · · uN−Ng




 0µk×1

hk

0Ng−µk−Lk×1




=




u−µk
u−1−µk

· · · u1−Lk−µk

u1−µk
u−µk

· · · u2−Lk−µk

...
...

. . .
...

uN−1−µk
uN−2−µk

· · · uN−Lk−µk


hk

= Ak(µk)hk,

where

[Ak(µk)]p,q = [uk]p−q−µk
, 1 ≤ p ≤ N, 1 ≤ q ≤ Ng,

Therefore, we have

Akhk,µk
= Ak(µk)hk,

and consequently,

y =
K∑

k=1

ejω̄kΓ(ωk)Ak(µk)hk + v. (18)

The above expression is the same as the signal model de-
rived in [4] when Ng ≥ Lmax.
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