
An LDPC Decoder with SNR Information
Kai-Jiun Yang, Shang-Ho Tsai, and Heng-Chang Hsu

Department of Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan

Abstract—In this work an LDPC decoder which complies with
IEEE 802.11n is proposed and implemented. The code rate is 1/2
and the code length is 648. We used partially parallel structure
to reduce the area. Additionally the SNR information is applied
to improve the BER performance. Moreover the CNU and the
BNU in the min-sum-correct algorithm were reordered so that
the hardware complexity can be reduced, and early termination
can be achieved at the first iteration. Furthermore the parity
check matrix is reordered such that the latency of each iteration
is reduced by 1/3. The proposed LDPC decoder can reach a
throughput of 37 ∼ 319Mbps with a core area of 5.3𝑚𝑚2 and
power consumption 224mW in a TSMC 90nm process.

I. INTRODUCTION

As the VLSI process technology advances, the low-density
parity-check (LDPC) code proposed by Gallager [1] caught
more and more attention. Chung et al. developed an imple-
mentation that approaches the Shannon limit within 0.0045 dB
performance loss for binary-input AWGN channel [2]. Since
the computing complexity is lower than Turbo codes and the
error-correct capability outperforms, the use of LDPC codes
has been included in several communication standards such
as IEEE 802.11n Wi-Fi standard, IEEE 806.16e WiMAX, and
IEEE 802.3an LAN protocols.

The hardware implementations of the LDPC decoders were
daunting due to the large parity check matrix. In general there
are two types of the LDPC decoder: fully and partially parallel
forms. Fully parallel form maps the entire Tanner graph into
the hardware. As a result fully parallel LDPC decoder can
achieve very high throughput but demand huge hardware.
Blanksby and Howland implemented the first LDPC decoder
chip in fully parallel form with a maximum throughput of
1Gb/s at 64MHz clock frequency [3]. In order to achieve
parallelism with 64 decoding iterations, the functional blocks
were repeatedly duplicated. The chip dimension is 52.5𝑚𝑚2

using a 0.16𝜇𝑚 process.
On the other hand, partially parallel form shares the calcula-

tion units to cut down the area. Consequently the throughput
is lower and the routing is congested. Shih et al. proposed
an code rate 1/2 LDPC decoder which complies with IEEE
802.16e standard [4]. The throughput varied from 60.6 Mb/s
with 8 iterations to maximum 222.2Mb/s with 2 iterations at
83.3MHz clock frequency, and the die size is only 8.29𝑚𝑚2

in a 0.13𝜇𝑚 process technology.
In this paper, we find that the SNR information helps to

boost BER performance in the min-sum-correct algorithm with
few iterations. The simulation showed that the performance
can be improved by 0.3 dB at BER = 10−4 with 8 iter-
ations. Furthermore we propose to reorder the check-node-
update (CNU) and the bit-node-update (BNU) in the min-sum-

correct algorithm to minimize the routing complexity and the
computing iteration. Moreover the reordered CNU and BNU
can check whether the decoded codeword is correct at the
first iteration so as to perform early termination. Also each
iteration can be shorten if CNU and BNU work concurrently
if there is no dependency. The proposed LDPC decoder
was implemented in a TSMC 90nm process with die size
5.3𝑚𝑚2 and it can be operated at a maximum clock frequency
of 151MHz. The throughput ranges from 39 Mb/s with 16
iterations to 319 Mb/s with 1 iteration.

II. LOW DENSITY PARITY CHECK CODES

LDPC code is a systematic block code. The 𝑀 ×𝑁 parity
check matrix H contains lots of 0s and few 1s. The LDPC
code has 𝑁 information bits and 𝑀 −𝑁 parity bits such that
the code rate R is 𝑁/𝑀 . IEEE 802.11n and IEEE 802.16e
standards use quasi-cyclic (QC) LDPC codes. Fig. 1 shows
an example of a QC LDPC parity check matrix with code
length 648 bits and information length 324 bits.In this figure,
each number or dash in the matrix is the base matrix with
dimension 𝑍 × 𝑍, where 𝑍 can be 27, 54, or 81. The base
matrix denoted by “-” is a zero matrix and the value 0 stands
for identity matrix. Other values indicates the amount of cyclic
right-shift of the identity matrix.

Fig. 1. An example of quasi-cyclic LDPC code parity check matrix H used
in 802.11n with 𝑍 = 27.

A. LDPC Encoder

Let u be the information vector, G be the LDPC generator
matrix, and v be the generated codeword vector such that
uG = v. Since LDPC code is a linear block code, the parity
check matrix H satisfies Hv𝑇 = 0. The equations can be
reformed as

Hv𝑇 = H(uG)
𝑇
= HG𝑇u𝑇 = 0 =⇒ HG𝑇 = 0 (1)

Richardson and Urbanke suggested an efficient method to
generate G from the stored H to decrease the use of storage

978-1-4799-0434-1/13/$31.00 ©2013 IEEE ICICS 2013
Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on June 09,2022 at 08:47:54 UTC from IEEE Xplore. Restrictions apply.

elements [5]: Let the parity check matrix H be partitioned
into six sub-matrices A(𝑚−𝑔)×(𝑛−𝑚), B(𝑚−𝑔)×𝑔, C𝑔×(𝑛−𝑚),
D𝑔×𝑔 , E𝑔×(𝑚−𝑔), and T(𝑚−𝑔)×(𝑚−𝑔) as illustrated in Fig.1.
Also the codeword v is segmented as v = [u p1 p2], where u
is the information bits with length 𝑛−𝑚 and the parity check
bits p1 and p2 are of length 𝑔 and and 𝑚 − 𝑔 respectively.
Therefore Hv𝑇 = 0 becomes{

Au𝑇 +Bp1
𝑇 +Tp2

𝑇 = 0

Cu𝑇 +Dp1
𝑇 +Ep2

𝑇 = 0
(2)

From Eqs. (2), we have (−ET−1A+C)u𝑇 + (−ET−1B+
D)p𝑇

1 = 0. Let 𝜙 := −ET−1B+D. With appropriate
combination of B, T, D, and E, the matrix 𝜙 becomes
an identity matrix. Then we can obtain the mathematical
relationship as follows:{

p𝑇
1 = (−ET−1A+C)u𝑇

p𝑇
2 = T−1(Au𝑇 +Bp𝑇

1)
(3)

As a result, the encoding process can be broken down as shown
in Fig.2. The information is encoded as codeword v and then
modulated as x by BPSK. Afterwards it is sent into AWGN
channel with noise variance 𝜎2 and received as y.

Fig. 2. Block diagram of the LDPC code encoder.

B. LDPC Decoder

It is common to use sum-product algorithm [6] for decoding,
which iterates the soft messages between bit-nodes and check-
nodes in the Tanner graph for best approximating the source
information as drawn in Fig.3. A log-likelihood ratio (LLR)
is usually applied to trim the complexity.

Fig. 3. Decoding flow of an LDPC decode.

1) Initialization: Each bit-node 𝐵𝑖 is initialized according
to the LLR from the received 𝑦𝑖

𝐿𝐵𝑖
= log

𝑃 (𝑣𝑖 = 0)

𝑃 (𝑣𝑖 = 1)
= log(𝑒

−2𝑦𝑖
𝜎2) =

−2𝑦𝑖
𝜎2

(4)

2) Check-node update (CNU): The LLR of the path from
𝐶𝑗 to 𝐵𝑖 is acquired from the connected bit-nodes except from
𝐵𝑖 as shown in Fig.4(a).

𝐿𝑟𝑗→𝑖
= log

𝑃 (𝑟𝑗→𝑖 = 0)

𝑃 (𝑟𝑗→𝑖 = 1)

= log

1 +
∏

𝑖′∈𝑊 (𝑗)∖{𝑖}
(1− 2𝑃 (𝑞𝑖′→𝑗))

1− ∏
𝑖′∈𝑊 (𝑗)∖{𝑖}

(1− 2𝑃 (𝑞𝑖′→𝑗))
. (5)

Cj

B1 B2 Bi Bk-1 Bk

q1→j
rj→i

qk→j

... ...

(a)

C1 C2 Cj Ck-1 Ck

Bi

(b)

r1→i rk→i
qi→j

Fig. 4. The message passing relationship (a) check-node update, and (b)
bit-node update.

where 𝑟𝑗→𝑖 is the probability message from check-node 𝑗 to
bit-node 𝑖. The min-sum-correct algorithm was proposed in [7]
for achieving a good approximation. The fundamental CNU
includes three bit-nodes and one check-node. Let the LLRs
tethered to these nodes be 𝐿𝑞1→1

, 𝐿𝑞2→1
, and 𝐿𝑟1→3

. By using
the Jacobian logarithm twice, Eq. (5) can be reformed as

𝐿𝑟1→3
= log

1 + (
𝑒𝐿𝑞1→1 − 1

𝑒𝐿𝑞1→1 + 1
⋅ 𝑒

𝐿𝑞2→1 − 1

𝑒𝐿𝑞2→1 + 1
)

1− (
𝑒𝐿𝑞1→1 − 1

𝑒𝐿𝑞1→1 + 1
⋅ 𝑒

𝐿𝑞2→1 − 1

𝑒𝐿𝑞2→1 + 1
)

= max(0, 𝐿𝑞1→1
+ 𝐿𝑞2→1

) + log(1 + 𝑒−∣𝐿𝑞1→1
+𝐿𝑞2→1

∣)

−max(𝐿𝑞1→1
, 𝐿𝑞2→1

)− log(1 + 𝑒−∣𝐿𝑞1→1
−𝐿𝑞2→1

∣)
= sign(𝐿𝑞1→1

) sign(𝐿𝑞2→1
)min(∣𝐿𝑞1→1

∣, ∣𝐿𝑞2→1
∣)

+ log(1 + 𝑒−∣𝐿𝑞1→1
+𝐿𝑞2→1

∣)− log(1 + 𝑒−∣𝐿𝑞1→1
−𝐿𝑞2→1

∣)).
(6)

3) Bit-node update (BNU): Similarly, the LLR of the path
from 𝐵𝑖 to 𝐶𝑗 is acquired from the connected check-nodes
except from 𝐶𝑗 as shown in Fig.4(b).

𝐿𝑞𝑖→𝑗
= log

𝑃 (𝑣𝑖 = 0)
∏

𝑗′∈𝑀(𝑖)∖{𝑗}
𝑃 (𝑟𝑗→𝑖′ = 0)

𝑃 (𝑣𝑖 = 1)
∏

𝑗′∈𝑀(𝑖)∖{𝑗}
𝑃 (𝑟𝑗→𝑖′ = 1)

= 𝐿𝐵𝑖
+

∑
𝑗′∈𝑀(𝑖)∖{𝑗}

𝐿𝑟𝑗′→𝑖
.

(7)

4) Terminating condition: The updated LLR of bit-node 𝐵𝑖

is given by

𝐿𝑝𝑜𝑠𝑡
𝐵𝑖

= log
𝑃 𝑝𝑜𝑠𝑡(𝑣𝑖 = 0)

𝑃 𝑝𝑜𝑠𝑡(𝑣𝑖 = 1)
= 𝐿𝐵𝑖

+
∑

𝑗∈𝑀(𝑖)

𝐿𝑟𝑗′→𝑖
. (8)

The estimated 𝑣𝑖 is 1 when the posteriori probability
𝑃 𝑝𝑜𝑠𝑡(𝑣𝑖 = 1) > 𝑃 𝑝𝑜𝑠𝑡(𝑣𝑖 = 0) i.e.{

𝑣𝑖 ⇒ 0, if 𝐿𝑝𝑜𝑠𝑡
𝑣𝑖

≥ 0
𝑣𝑖 ⇒ 1, if 𝐿𝑝𝑜𝑠𝑡

𝑣𝑖
< 0

∀𝑖 ∈ {1, 2, . . . , 𝑛}. (9)

If the codeword is correct, the iteration stops. Otherwise the
iteration continues until the predefined iteration limit.

III. PROPOSED ALGORITHM AND ARCHITECTURE

This work proposes to utilize the known SNR information
to further enhance the BER performance. In addition the CNU
and BNU in min-sum-correct algorithm are reordered for early
termination so as to speed up the lengthy decoding whenever
the channel quality allows. Based on the proposed features the

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on June 09,2022 at 08:47:54 UTC from IEEE Xplore. Restrictions apply.

block diagram of the proposed LDPC decoder is as shown in
Fig.5. The proposed architecture is in partial parallel form so
it is suitable for mobile devices, where chip-size and power-
consumption are usually more important than throughput.

SNR

Processor
Storage I

Storage

IICNU
BNU

Early Termination

& Output Buffer

Input Enable

Input

Output

Fig. 5. The architecture of the proposed LDPC decoder. The dash line is
the control signal.

.

A. SNR Processor

The SNR processor multiplies the input 𝑦𝑖 with the known
SNR value. Usually the SNR information can be acquired from
comparing the pilot tones with pre-defined patterns. At the
initialization stage of LDPC decoding, the LLR of bit-nodes
are initialize by Eq. (4), which has the inverse term of the
variance. According to the definition of SNR, it is proportional
to the inverse of the deviation 𝜎. Therefore, multiplying the
SNR to the input 𝑦𝑖 can best initialize the bit-nodes.

1 1.5 2 2.5 3 3.5
10

−4

10
−3

10
−2

10
−1

802.11n(648,324) AWGN Min−Sum−Correct algorithm iteration=8

SNR(dB)

B
E

R

With SNR
Without SNR

Fig. 6. The BER of 8-iteration LDPC decoding with and without SNR
information.

An example is provided to show that knowing the SNR
information can indeed improve the decoding performance.
Fig. 6 is the BER performance of a 8-iteration LDPC decoding
with and without SNR information. At BER=10−4, the SNR
improves by 0.3dB if the SNR information is applied. On
the other hand, we have simulated off-line and found that
the improvement starts to decrease as the number of iteration

TABLE I
THE SNR MAPPING TABLE.

𝑆𝑁𝑅𝑖𝑛𝑡𝑒𝑔𝑒𝑟 Select 𝑆𝑁𝑅𝑖𝑛𝑡𝑒𝑔𝑒𝑟 Select
[−∞,2) 1 [2,3) 2

[3,4) 3 [4,5) 4
[5,6) 5 [6,7) 6
[7,8) 7 [8,9) 8
[9,10) 9 [10,∞) 10

𝑆𝑁𝑅𝑑𝑒𝑐𝑖𝑚𝑎𝑙 Select 𝑆𝑁𝑅𝑑𝑒𝑐𝑖𝑚𝑎𝑙 Select
[0,0.25) 0 [0.25,0.5) 0.25

[0.5,0.75) 0.5 [0.75,1) 0.75

increases or the number of iterations equals to one. Therefore,
the number of iterations can be decreased on the premise
of utilizing SNR information. The multiplication of the SNR
information is implemented by table look-up to reduce com-
plexity, and this is shown in Tab. I.

<<3<<2
<<1Buf

>>1>>2

yi

ADD
Pool

10x

1x

...

0.75x

0x

M
U

X

To BNU

SNRinteger

SNRdecimal

ADD
Pool

...

M
U

X

Fig. 7. The schematic of the proposed SNR processer.

Adders and shift-registers are applied to replace the mul-
tiplier as shown in Fig. 7. Based on the simulation results,
the proposed SNR processor can pronouncedly improve the
performance when the SNR is in the range between 0 ∼ 10
dB. Therefore, the SNR mapping table in Tab. I is designed
according to this simulation results.

B. Reordering of CNU and BNU

When the system is with high SNR, the received codeword
may already be correct without any correction. In this case,
there is no needed to perform any iteration in the LPDC de-
coding procedure. However, for conventional implementation,
although early termination can be applied, iterations are still
needed to verify whether the received codeword is correct
or not. That is, from Fig. 3, BNU and CNU still needed to
be conducted once to obtain the initial hard-decision result.
To overcome this issue, we propose to reorder the CNU and
BNU as shown in Fig. 8 so that the decoded results can be
generated sooner at high SNR. At bit-node update, the hard-
decision codeword can be acquired and the initialization can
be performed concurrently. If the weighting is higher than the
threshold, there is no need to continue with check-node update.
It is worth to emphasize that the proposed reordering does not
affect the performance. It only modifies the decoding flow
for better efficiency. As demonstrated in Tab.II, the proposed
reordering can generate the output at least two steps earlier.

The proposed reordering also increases hardware reusability.
Originally the soft information needs to be registered during
initialization and expanded in CNU These different steps

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on June 09,2022 at 08:47:54 UTC from IEEE Xplore. Restrictions apply.

Step 1 2 3 4 5 6 7 8
Original algorithm Initialize CNU BNU CNU BNU CNU BNU CNU

Hard-decision vlue generate 1st 2nd 3rd
Early termination compare 1st 2nd

Reordered algorithm BNU CNU BNU CNU BNU CNU BNU CNU
Hard-decision vlue generate 1st 2nd 3rd 4th
Early termination compare 1st 2nd 3rd

TABLE II
COMPARISON OF ORIGINAL ALGORITHM AND THE PROPOSED REORDERED ALGORITHM.

Initialization Check node
update

Bit node
update

Terminating
conditionInput

Output

N

Y

Fig. 8. The reordered min-sum-correct algorithm.

requires two sets of routing. In the proposed reordering since
the initialization can be done concurrently with BNU, the same
routing can be shared by the following CNU. Therefore the
routing- congestion can be relieved.

C. Latency Reduction

We propose to reorder the parity check matrix such that each
overlong iteration can be shorten. Both the storage size and
the decoding time increase as the parity check matrix of LDPC
codes grow especially using partial parallel method. If the
parity check matrix is properly reordered, the decoding latency
can be reduced because some CNU and BNU can be operated
at the same time (see [8], [9]). From Eq. (1), changing the
row-order the product is still zero while changing the column-
order only affects the codeword sequence of v. Therefore
reordering both the rows and columns of the parity check
matrix as shown in Fig.9 does not alter the function. The CNU
operates on row data while BNU operates on column data.
Furthermore, the reordered parity check matrix is partitioned
into three CNU groups and BNU groups. It can be observed
that BNU1 does not overlap with CNU3 and BNU3 does not
overlap with CNU1. This means that each iteration can overlap
by concurrently enabling BNU and CNU over independent
groups of data. The iterations can be scheduled as shown in
Fig. 10. The proposed latency reduction can save 1/3 clocks
of each iteration.

D. Fixed Point Analysis

Before VLSI implementation the proposed algorithm were
simulated with fix-point model for analyzing the quantization
noise. The fix-point variables within the design are of 4
integer-bits and 4 decimal-bits. The BER comparison is shown
in Fig. 11, where the dashed curves are the floating-point with
SNR information, solid curves are the fixed-point with SNR
information, and dotted curves are the fixed point without SNR

0 - 1 0 - - - - 0 0 0 - - - - 0 - - - - - - - -
10 20 - - 0 0 - - 7 22 23 - 16 - - - - - - - - - - -
- - - - - 0 0 - 11 19 13 - - - 3 17 - - - - - - - -

18 - - - - - 0 0 25 23 9 8 - 14 - - - - - - - - - -
- - 1 - - - - 0 3 16 25 - - 2 - - - 5 - - - - - -
- 24 - - 0 - - - 13 0 6 - - - - - 8 - - - - - - 0

BNU1 BNU2 BNU3
C
N
U
1
C
N 24 0 13 0 6 8 0

- - 0 - - - - - 25 8 7 - - - - - - 18 - - - - 0 0
- 0 - 0 - - - - 22 17 12 - - 0 - - 0 - 0 - - - - -
- - - - - - - - 23 3 0 - - - 9 11 - - - - 0 0 - -
- - - - - - - - 2 20 25 - 0 - - - - 0 - 0 0 - - -
- - - - - - - - 6 10 24 0 - - 0 - - - 0 0 - - - -
- - - - - - - - 24 17 10 23 1 - - - 3 - - - - 0 0 -

N
U
2
C
N
U
3

Fig. 9. The proposed parity check matrix for IEEE 802.11n LDPC code.

information. It is observed that the BER performance of fixed-
point with SNR information is better than that without SNR
information.

1 1.5 2 2.5 3 3.5 4
10

−4

10
−3

10
−2

10
−1

802.11n(648,324) AWGN Min−Sum−Correct Algorithm

SNR(dB)

B
E

R

fixed poind without SNR at iteration 3

fixed poind without SNR at iteration 5

fixed poind without SNR at iteration 7

fixed poind without SNR at iteration 10

fixed poind with SNR at iteration 3

fixed poind with SNR at iteration 5

fixed poind with SNR at iteration 7

fixed poind with SNR at iteration 10

floating point with SNR at iteration 3

floating point with SNR at iteration 5

floating point with SNR at iteration 7

floating point with SNR at iteration 10

iter3

iter5

iter10

iter7

Fig. 11. The BER comparison of floating-point and fixed-point models.

IV. VLSI IMPLEMENTATION

The proposed LDPC decoder for IEEE 802.11n uses a
TSMC 90 𝑛𝑚 standard cell library for implementation. The
layout is as shown in Fig. 12, and the specification is listed in
Tab.III.

APR is the most challenging stage during the implemen-
tation. Since partial parallel architecture reuses the functional
blocks, different check-nodes and bit-nodes need flexible in-
terconnection to share common components. During circuit

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on June 09,2022 at 08:47:54 UTC from IEEE Xplore. Restrictions apply.

BNU1 BNU2 BNU3

CNU1 CNU2 CNU3

BNU1 BNU2 BNU3

CNU1 CNU2 CNU3

BNU1 BNU2 BNU3

CNU1 CNU2 CNU3

BNU1 BNU2 BNU3

CNU1 CNU2 CNU3

Time schedule (a)

Time schedule (b)

Z

Z

Fig. 10. The timing diagram: (a) Original (b) Proposed. BNU3 with CNU1 can work concurrently, and so do BNU1 with CNU3.

Fig. 12. The layout of the proposed LDPC decoder.

Items Soecification
Technology TSMC 90 𝑛𝑚

Package CQFP128
Chip Size 5.3𝑚𝑚2

Core Area 3.1𝑚𝑚2

Gate Count 674K
Max Frequency 151MHz

Throughput 37 ∼ 319Mbps
Power Consumption 244mW

TABLE III
THE SPECIFICATION THE PROPOSED LDPC DECODER.

synthesis using Synopsys Design Compiler, the hierarchy must
be flattened such that the CAD tool can have the flexibility
to perform logic optimization to meet both area and timing
constraints. Therefore in the chip layout-view the hierarchy
cannot be clearly discerned. On the other hand, it is because
the partial parallel architecture is applied, such that the total
area can be far less than that of fully parallel architecture
at the cost of serial processing time. Additionally the power
consumption is reduced due to less chip dimension. With less

computing iteration at high SNR, the power saving can be
more pronounced.

V. CONCLUSION

We proposed an LDPC decoder compliant with IEEE
802.11n standard, which refers to the known SNR value.
With SNR information the BER performance can be improved
with fewer number of iterations. Partial parallel architecture is
applied in the min-sum-correct algorithm in order to reuse
the computing elements, and as a result the area is greatly
reduced. Moreover we propose to reorder the CNU and BNU
as well as the parity check matrix. By the proposed methods,
not only the hardware complexity and computing latency are
reduced, but also simpler early-termination can be achieved
at the first iteration in LDPC decoding. The proposed LDPC
decoder can achieve 37 ∼319Mbps throughput with 5.3𝑚𝑚2

chip area, and the estimated average power consumption is
244mW.

REFERENCES

[1] R. G. Gallager, “Low-Density Parity-Check Codes,” Cambridge, MA:MIT
Press, 1960.

[2] S. Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On the
Design of Low-Density Parity-Check Codes within 0.0045 dB of the
Shannon Limit,” Communications Letters, IEEE, vol.5, no.2, pp. 58-60,
Feb. 2001.

[3] A.J. Blanksby and C.J. Howland, “A 690-mW 1-Gb/s 1024-b, Rate-1/2
Low-Density Parity-Check Code Decoder,” Solid-State Circuits, IEEE
Journal of , vol.37, no.3, pp.404-412, Mar 2002.

[4] X.Y. Shih, C.Z. Zhan, C.H. Lin, and A.Y. Wu, “An 8.29𝑚𝑚2 52mW
Multi-Mode LDPC Decoder Design for Mobile WiMAX System in
0.13𝜇𝑚 CMOS Process,” Solid-State Circuits, IEEE Journal of , vol.43,
no.3, pp.672-683, March 2008.

[5] T.J. Richardson and R.L. Urbanke, “Efficient Encoding of Low-Density
Parity-Check Codes,” Information Theory, IEEE Transactions on, vol.47,
no.2, pp.638-656, Feb 2001.

[6] S. Lin and D. J. Costello, Control Coding: Fundamentals and Applica-
tions, 2nd ed. New York: Pearson/Prentice Hall, 2004.

[7] X.Y. Hu, E. Eleftheriou, D.-M. Arnold and A. Dholakia, “Efficient
Implementations of the Sum-Product Algorithm for Decoding LDPC
Codes,” Global Telecommunications Conference, 2001. IEEE , vol.2,
pp.1036-1036, 2001.

[8] H. Zhong and T. Zhang, “Design of VLSI Implementation-Oriented
LDPC codes,” Vehicular Technology Conference, 2003. IEEE 58th , vol.1,
pp.670-673, 6-9 Oct. 2003.

[9] I. C. Park and S. H. Kang, “Scheduling Algorithm for Partially Parallel
Architecture of LDPC Decoder by Matrix Permutation, in Proc. IEEE
ISCAS, pp.5778-5781, May 2005.

Authorized licensed use limited to: National Chiao Tung Univ.. Downloaded on June 09,2022 at 08:47:54 UTC from IEEE Xplore. Restrictions apply.

