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ABSTRACT

A scheme to completely eliminate the multiaccess interference
(MAI) of the multicarrier code division multiple access (MC-CDMA)
system in a frequency-selective fading environment using code-
word selection is proposed. We show that, if the codewords of
CDMA are chosen to be a proper subset of the Hadamard-Walsh
codes, the MC-CDMA system can be MAI-free so that the imple-
mentational complexity of the transceiver can be greatly reduced.
This MAI-free property is analyzed theoretically and demonstrated
via simulation results.

1. INTRODUCTION

Multiaccess interference (MAI) is a major impairment that lim-
its the performance of CDMA-based systems. In a synchronous
CDMA (S-CDMA) system where user’s timing is aligned within a
fraction of chip-time interval, MAI can be greatly reduced by the
use of orthogonal codewords [1]. S-CDMA can be used in down-
link transmission for large cells such as in the digital cellular IS-95
standard and in both downlink and uplink transmissions in micro
cells such as personal communication services (PCS) [1]. How-
ever, the orthogonality may be destroyed in a multipath environ-
ment. Research has been conducted to use sophisticated multiuser
detection (MUD) [2] or signal processing to mitigate MAI. These
techniques demand extra complexity in the receiver.

Recently, multicarrier CDMA (MC-CDMA) has been proposed
as a promising multiuser technique. MC-CDMA systems can be
classified to two types [3]. For the first type, a symbol is transmit-
ted per time slot. It is spread into several chips that are allocated
to different subchannels. The number of subchannels is equal to
the number of chips. For the second type, several symbols are
serial-to-parallel converted and each symbol is spread into several
chips. The chips corresponding to the same symbol are allocated
to the same subchannel. This is often called the MC-DS-CDMA
system. As compared with the conventional CDMA systems, MC-
CDMA can effectively combat the inter-symbol-interference (ISI).
Moreover, MC-CDMA can fully exploit the frequency diversity
gain if the maximum ratio combing (MRC) is used at the receiver.
However, the performance of MC-CDMA is still greatly limited by
MAI. The MAI-free property is particularly important for mobile
communications since it is desirable for the mobile unit to have a
simple architecture.

In this work, we propose a codeword selection scheme that
can achieve completely MAI-free property for the first type MC-
CDMA system in both uplink and downlink transmissions. As a
result, the receiver complexity for symbol detection can be greatly
reduced since there is no need to use sophisticated MUD or signal

processing to eliminate MAI. Moreover, since our code allows the
use of MRC and achieves zero MAI at the same time, a full diver-
sity gain of multipath length can be achieved. The main results of
our work are given below. Let the spreading factor be N = 2ns

and the multipath length be L. We first show that the MAI-free
property for a multipath channel of length L cannot be reached if
N < 2L. Then, we prove that, if the N Hadamard-Walsh codes
are properly divided into G = 2ng groups so that each group has
N/G codewords and if ns > ng > 1 and G ≥ L, MAI-free can
be achieved using any group of codewords. Simulation results are
given to corroborate theoretical results.

2. SYSTEM MODEL

The block diagram of an MC-CDMA system in the uplink direc-
tion, i.e., from the mobile station to the base station, is shown in
Fig. 1. Note that, even though the analysis is conducted for the up-
link direction, the same analysis applies to downlink transmission
as well if we set the channel fading of every user to be the same.
At each time slot, the input is a modulation symbol. Suppose that
there are T users. The symbol from user i is denoted by xi. In the
first stage, xi is spread by N chips to form an N × 1 vector, de-
noted by yi and whose kth element is yi[k]. The relation between
yi[k] and xi is

yi[k] = wi[k]xi, 0 ≤ k ≤ N − 1, (1)

where wi[k] is the kth element of user i’s orthogonal code. After
spreading, yi is passed through the N × N IDFT matrix. Then,
the output is parallel-to-serial (P/S) converted and a cyclic prefix
(CP) of length L − 1 is added, where L is the largest delay spread
in the system.

The receiver removes the CP and passes each block of size N
through the N × N DFT matrix. Since there are T users, the kth
element of the DFT output ŷ is given by [4]

ŷ[k] =

T−1∑
j=0

λj [k]yj [k] + e[k], (2)

where λj [k] is the kth component of the N -point DFT of the jth
channel path hj(n), and e[k] is the received noise after DFT. Note
that ŷ will be sent to T branches for symbol detection for T users.
To detect symbols transmitted by the ith user, ŷ is multiplied by
w∗

i [k] and frequency gain λ∗
i [k], where ∗ denotes complex-conjugate.

After frequency gain, the N chips are summed up to form the sym-
bol x̂i given by

x̂i =

N−1∑
k=0

λ∗
i [k]w∗

i [k]ŷ[k]. (3)
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Fig. 1. The block-diagram of an MC-CDMA system.

Note that the path from ŷ to x̂i is usually called MRC [3]. From
(1), (2) and (3), we have

x̂i = xi

N−1∑
k=0

|λi[k]|2 +

N−1∑
k=0

λ∗
i [k]w∗

i [k]e[k]

+

T−1∑
j=0,j �=i

xj

N−1∑
k=0

λ∗
i [k]w∗

i [k]λj [k]wj [k]

︸ ︷︷ ︸
MAIi←j

, (4)

where MAIi←j denotes the MAI from user j to user i.
Our goal is to make MAIi←j = 0. For any target user i, if

MAIi←j = 0, the symbol x̂i will be affected only by his/her own
transmitted symbols xi and the corresponding channel response
λi[k]. Thus, the system can adopt a simple detection scheme with-
out using sophisticated MUD and/or signal processing techniques.
When the channel fading is flat, λi[k] and λj [k] are constants and
independent of k. Under this situation, MAIi←j = 0 if orthog-
onal codes such as the Hadamard-Walsh code is used. However,
in practice, the channel is usually frequency-selective and the or-
thogonality of codewords can be destroyed. In the next section,
we will evaluate MAIi←j and seek ways to make it equal to zero
under the multipath environment.

3. MAI-FREE MC-CDMA SCHEME

By the definition of DFT, we can expand MAIi←j defined in (4)
as

MAIi←j = xj

N−1∑
k=0

L−1∑
n,m=0

hj(n)h∗
i (m)e−j 2π

N
k(n−m)

︸ ︷︷ ︸
η

·w∗
i [k]wj [k], (5)

where η is a function of k, i, and j. It can be shown that

η =

L−1∑
l=0

hj(l)h
∗
i (l) +

L−1∑
p=1

L−1−p∑
q=0

[
hj(p + q)h∗

i (q)e
−j 2π

N
kp

+ hj(q)h
∗
i (p + q)ej 2π

N
kp

]
. (6)

According to (6), we can rewrite (5) as

MAIi←j = xj

L−1∑
l=0

hj(l)h
∗
i (l)O1 + xj

L−1∑
p=1

L−1−p∑
q=0

· [hj(p + q)h∗
i (q)O2 + hj(q)h

∗
i (p + q)O3] ,

(7)

where

O1 =

N−1∑
k=0

w∗
i [k]wj [k], (8)

O2 =

N−1∑
k=0

e−j 2π
N

kpw∗
i [k]wj [k], (9)

O3 =

N−1∑
k=0

ej 2π
N

kpw∗
i [k]wj [k]. (10)

Based on (7)-(10), it is clear that if O1 = O2 = O3 = 0 simulta-
neously for 1 ≤ p ≤ L − 1, we will achieve MAIi←j = 0. For
convenience, let

w∗
i [k]wj [k] = φi,j [k]. (11)

Since the condition O3 = 0 is equivalent to O∗
3 = 0, we can

rewrite the three conditions as follows:⎧⎪⎨
⎪⎩

∑N−1
k=0 φi,j [k] = 0,∑N−1

k=0 e−j 2π
N

kpφi,j [k] = 0, 1 ≤ p ≤ L − 1∑N−1
k=0 e−j 2π

N
kpφ∗

i,j [k] = 0, 1 ≤ p ≤ L − 1

. (12)

By solving the linear system in (12). It is possible to find code-
words that achieve MAIi←j = 0. Note that if the codewords are
real, the first two conditions in (12) are sufficient. Let us use a
simple example to illustrate this idea.
Example: Assume that the multipath length L = 2. We consider
different N in this example. First, let us see if N = 2 can achieve
MAIi←j = 0.

N=2. From (12), we have the following conditions.⎧⎨
⎩

φi,j [0] + φi,j [1] = 0,
φi,j [0] − φi,j [1] = 0,
φ∗

i,j [0] − φ∗
i,j [1] = 0.

. (13)

Obviously, the only solution to (13) is φi,j [0] = φi,j [1] = 0.
Hence, when N = 2, we cannot achieve MAI-free for L = 2.

N=3. From (12), we can obtain the following conditions.⎧⎨
⎩

φi,j [0] + φi,j [1] + φi,j [2] = 0,
φi,j [0] + (−1 + j)φi,j [1] + (−1 − j)φi,j [2] = 0,
φ∗

i,j [0] + (−1 + j)φ∗
i,j [1] + (−1 − j)φ∗

i,j [2] = 0.
. (14)

By solving the above linear system, the only solution to (14) is
φi,j [0] = φi,j [1] = φi,j [2] = 0. Hence, when N = 3, we cannot
reach MAI-free for L = 2.

N=4. From (12), we have following conditions.⎧⎨
⎩

φi,j [0] + φi,j [1] + φi,j [2] + φi,j [3] = 0,
φi,j [0] + jφi,j [1] − φi,j [2] − jφi,j [3] = 0,
φ∗

i,j [0] + jφ∗
i,j [1] − φ∗

i,j [2] − jφ∗
i,j [3] = 0.

. (15)
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The solution to the linear system (15) can be written as

φi,j [0] = −φi,j [1] = φi,j [2] = −φi,j [3]. (16)

To meet this condition, we may consider a subset of the Hadamard-
Walsh code. For example, consider the following 4× 4 Hadamard
matrix

W4 =

⎛
⎜⎝

+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

⎞
⎟⎠ ,

whose four columns are denoted by w0, w1, w2 and w3, respec-
tively. Suppose that we assign two codewords {w0, w1} to two
users. The product of the 2 codewords yields

φ0,1[0] = −φ0,1[1] = φ0,1[2] = −φ0,1[3] = 1.

Since the condition of (16) is met, the system is completely MAI-
free for L = 2 and T = 2. Similarly, if the other pair of codewords
{w2, w3} is used, the system is also MAI-free.

The Example presents a codeword selection scheme to achieve
the MAI-free property by solving a system of linear equations.
However, as L and N grow, the effort to solve linear equations
becomes tremendous. In the following, we will express the prob-
lem in matrix representation, which provides more insight into this
problem. The conditions given by (12) can be written in matrix
form as

FL×NΦN×1 = FL×NΦ
∗
N×1 = 0L×1, (17)

where FL×N is the L × N matrix with its element defined by

[FL×N ]p,q = e−j 2π
N

pq, (18)

ΦN×1 is an N × 1 vector of the form:

ΦN×1 = (φi,j [0] φi,j [1] . . . φi,j [N − 1])t , (19)

and 0L×1 is the zero vector of dimension L× 1 . In the following,
we will prove three lemmas and one theorem to characterize the
solution to (17).
Lemma 1: Suppose the multipath length is L and the spreading
gain is N . For either real or complex codewords, it demands N ≥
2L to achieve the MAI-free property.

Proof: Let us first prove the lemma for real codewords. From
(18), we know that FL×N gives the first L rows of the N×N DFT
matrix. Hence, FL×NΦN×1 is the first L elements of the N -point
DFT of φi,j [k]. To achieve MAI-free, the first L elements of the
N -point DFT of φi,j [k] should be exactly zeros. Let the N -point
DFT of φi,j [k] be denoted by ψi,j [k]. The DFT output of a real
vector is complex-conjugate symmetric [5], i.e.

ψi,j [k] = ψ∗
i,j [N − k], 1 ≤ k ≤ �N/2� − 1, (20)

where �N/2� is the smallest integer that is greater or equal to N/2.
Since the first L elements of of ψi,j [k] should be exactly zeros to
achieve MAI-free, from (20), we demand{

ψi,j [l] = 0, 0 ≤ l ≤ L − 1
ψi,j [N − l] = 0, 1 ≤ l ≤ L − 1

. (21)

If N ≤ 2L − 1, all elements of ψi,j [l] have to be zeros according
to (21). Since this choice does not lead to a valid codeword, we
demand N ≥ 2L.

For the case of complex codewords, the third condition in (12)
has to be satisfied as well. That is,

N−1∑
k=0

e−j 2π
N

k(N−l)φi,j [l] = 0, 0 ≤ l ≤ L − 1.

Thus, ψi,j [N − l] is zero for 0 ≤ l ≤ L−1. Together with the first
two conditions in (12), the complex codewords should meet the
same conditions in (21) to achieve MAI-free. Hence, we demand
N ≥ 2L for complex codewords as well.

Next, we show that a proper subset of Hadamard-Walsh codes
can achieve the MAI-free conditions in (17) as follows.
Proposed code selection scheme: Suppose N = 2ns and G =
2ng , where ns > ng + 1 > 1. Let the Hadamard matrix of order
N be denoted by WN , whose columns form the N Hadamard-
Walsh codes. Starting at codewords index 0, every consecutive
N/G codewords define a group so that we have G groups with
N/G codewords in each group. Moreover, group 0 is defined to
be the one that contains column 0 of WN , which is the all one
code and denoted by w0.
Lemma 2: Suppose the proposed code selection is used. Then, the
product of any two codewords in the same group is equal to one of
the N/G-1 codewords of group 0, where w0 is excluded.

Proof: Before we proceed to the proof, let us recall a well
known property of the Hadamard matrix [6]. A Hadamard matrix
WN of order N = 2p, p = 1, 2, · · · , can be recursively defined
using the Hadamard matrix of order 2, i.e.

WN = W2 ⊗ WN/2 =

(
WN/2 WN/2

WN/2 −WN/2

)
, (22)

where ⊗ is the Kronecker product [6] and

W2 =

(
+1 +1
+1 −1

)
.

Let us first prove that the product of any two codewords within
group 0 is again a codeword within group 0. According to (22),
the N/G×N/G upper left submatrix of WN is an N/G×N/G
Hadamard matrix. Thus, the product of any two columns of this
submatrix is again a column within this submatrix (see [7]). Since
the codewords in group 0 are the first N/G columns of WN ,
which is obtained by repeating the N/G × N/G submatrix by
G times along the column. Hence, the product of any codewords
in group 0 remains to be a codeword within group 0.

Next, let us prove that the product of any two codewords within
the same group rather than group 0 is a codeword within group 0.
Recall that wi[k] is the kth element of the ith codeword. It can
also be used to denote the kth element of the ith column of WN ,
i.e. the element at the kth row and the ith column. According to
(22), we have the following property{

wi[k] = wi+N/2[k], 0 ≤ k ≤ N/2 − 1,
wi[k] = −wi+N/2[k], N/2 ≤ k ≤ N − 1.

(23)

From (23), we see that the product of any two columns within the
last half N/2 columns is equal to the product of the two corre-
sponding columns within the first half N/2 column, i.e.

wi[k]wj [k] = wi+N/2[k]wj+N/2[k], 0 ≤ i, j ≤ N/2 − 1.
(24)

This can be viewed as dividing N codewords into two groups. The
first N/2 half codewords forms group 0 and the last N/2 half
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codewords forms group 1. Using (24), the product of any two
codewords in group 1 is equal to a codeword in group 0. Using a
recursive procedure, we can divide N codewords into G = 2ng

groups and show the product of any two codewords within the
same group is a codeword of group 0.
Lemma 3: Excluding w0, the N -point DFT of any of the code-
words in group 0, denoted by Wi[f ] with 0 ≤ f ≤ N − 1 and
1 ≤ i ≤ N/G − 1, has the following property:

Wi[0] = Wi[1] = . . . = Wi[G − 1] = 0. (25)

Proof: For the DC term that f = 0, it is easy to see Wi[0] =∑N−1
k=0 wi[k] = 0 since there are equal positive ones and minus

ones for any codewords excluding w0. Let us consider the case
f �= 0. Since the codewords in group 0 are the first N/G columns
of WN , they are formed by repeating the upper left N/G × N/G
submatrix of WN by G times in the column. Since the codewords
are repeated G times in the time domain, it will follow G − 1
zeros in the frequency domain as defined in (25) [5]. From (25)
and Lemma 2, we have the following property

ψi,j [0] = ψi,j [1] = . . . = ψi,j [G − 1] = 0, (26)

where ψi,j [k] is the kth element of the N -point DFT of the product
of any two codewords in the same group.

The following theorem is the direct consequence of results in
(17) and Lemmas 1-3.
Theorem: Let the multipath length be L. Suppose the proposed
code selection is used with G ≥ L. Then, if the codewords in
any one group are used in the MC-CDMA system, the system is
completely MAI-free.

Note that we did not constrain the multipath coefficient through-
out the derivation. Thus, once G ≥ L, MAI-free can be achieved
for arbitrary multipath coefficients.

4. SIMULATION RESULTS

In this section, we provide simulation results to confirm the the-
oretical derivation given in the previous section. The simulation
was conducted with the following parameter setting. The size of
the Hadamard-Walsh codes is N = 64. The transmit power has
an unit variance. The multipath length is L, where each tap is an
i.i.d. random variable with an unit variance. We will evaluate the
MAIi←j defined in (5).

For L = 2, one realization of |MAIi←j | as a function of
user indexes i and j is shown in Fig. 2. We see that there are
two zones where the MAI is completely zero. That is, the zone
with codewords from 0 to 31, and the zone with codewords from
32 to 63. The diagonal terms have the peak value since it is the
reconstructed desired signal power. It is clear that the system is
MAI-free if we use either one of the two groups of codewords.

For L = 4, the performance is shown in Fig. 3. Again, we
observe 4 zones where the MAI effect is zero. That is, codewords
0-15, 16-31, 32-47 and 48-63. Hence, we can use any one of the 4
groups to achieve the MAI-free property.

5. CONCLUSION AND FUTURE WORK

A codeword selection scheme was proposed to completely elim-
inate the MAI effect of the MC-CDMA system. The MAI-free
property can greatly simplify the implementational complexity of
the transceiver. This MAI-free property was proved and confirmed

Fig. 2. |MAIi←j | as a function of user indexes (N = 64, L = 2).

Fig. 3. |MAIi←j | as a function of user indexes (N = 64, L = 4).

via simulation. We will study how the MAI-free property is af-
fected by the carrier frequency offset (CFO) in the near future.
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