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Abstract—The channel phase precoding (CPP) technique was
recently proposed for the ultra-wideband (UWB) communication
system in [1] to save the feedback overhead and the computa-
tional complexity as compared with the time-reversal prefilter
(TRP) technique [2]. Two ideal assumptions have been made
in both systems; namely, the availability of accurate channel
information and perfect synchronization of transmitted pulses.
In this work, we examine the impact of timing jitter on the
performance of TRP and CPP and show that the CPP-UWB
system is more robust against the timing jitter than the TRP-
UWB system.

I. INTRODUCTION

To design receivers for ultra-wideband (UWB) commu-
nication systems, one idea [3] is to employ tens or even
hundreds of rake fingers to acquire sufficient signal power
along different paths. This design is however complicated and
expensive. More recently, the time-reversal prefiltering (TRP)
technique was proposed in [2] to concentrate the signal power
so that the number of rake fingers can be significantly reduced
and the design of UWB receivers can be greatly simplified.
The basic idea of TRP is to use the time-reversed channel
impulse response to preprocess the original transmit data so
that the signal power is focused at the receiver automatically.

The TRP scheme demands the channel knowledge at the
transmitter. To feedback the channel information from the
receiver to the transmitter is challenging due to the large
number of channel taps in an UWB channel response. The
channel phase precoded UWB (CPP-UWB) transceiver design
was proposed in [1] to mitigate this problem. Rather than
employing the full channel information for symbol precoding,
the CPP-UWB transmitter encodes the transmit data with the
reversed channel phase. Please note that the UWB channel
response is real since it is a baseband communication system
in nature. The phase information actually corresponds to the
sign of each tap, and its value can be represented by one
bit. Consequently, the feedback overhead is greatly reduced.
The CPP-UWB system leads to concentrated signal power at
the receiver since signals transmitted along different paths are
added constructively. Since not all the channel knowledge is
utilized at the transmitter, the decoding performance of CPP
is worse than that of TRP.

The performance of TRP-UWB and CPP-UWB schemes
depends on the correct channel estimation and ideal timing
synchronization. It was shown in [4] that a small amount of
timing mismatch leads to great performance degradation. In

this work, we study and compare the robustness of TRP-UWB
and CPP-UWB systems against the timing jitter, and conclude
that the CPP-UWB system is more robust than the TRP-UWB
system in this measure.

The rest of the paper is organized as follows. The UWB
channel model and the system block diagrams for TRP and
CPP are presented in Sec. II. Then, the channel estimation
scheme proposed in [1] is revisited and the timing jitter is
considered in Sec. III. We analyze the performance of the two
precoded systems with respect to a received pulse waveform in
the presence of the time jitter in Sec. IV. Computer simulation
is performed to evaluate the robustness of two precoding
systems in Sec. V. Finally, concluding remarks are drawn in
Sec. VI.

II. SYSTEM MODELS

The carrierless tap-delay-line (TDL) channel model [5] is
adopted for the UWB channel modeling. It can be written as

h(t) =
L−1∑
i=0

hiδ(t − i∆) =
L−1∑
i=0

piαiδ(t − i∆), (1)

where hi = piαi, L is the total number of signal paths, δ(x)
is the Dirac delta function of x, ∆ is the multipath resolution
which is set as the time domain pulse width, pi ∈ {+1,−1}
with equal probability is the ith phase component, and the cor-
responding amplitude component αi is modeled as a Rayleigh
random variable whose probability density function (PDF) is

fαi
(x) =

x

σ2
i

e−x2/2σ2
i . (2)

Furthermore, the power of each tap decreases exponentially
with respect to its index, i.e.,

E{α2
i } = 2σ2

i = Ωγi, (3)

where E{x} is the expectation of random variable x, Ω is
the power of the first tap, and γ = e−∆/Γ. In the context of
our interest, we assume that the channel coherent time is long
enough so that the channel is invariant during the transmission
of one package of data symbols.

The block diagram of a generic precoded UWB system is
shown in Fig. 1, where the channel information is estimated at
the receiver and then sent back to the transmitter for symbol
precoding. A different amount of channel information is used
in different precoding schemes. That is, the channel phase
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Fig. 1. The block diagram of a generic precoded UWB system.

information represented by pi in (1) is required by CPP while
the complete channel knowledge that contains both pi and αi

is demanded by TRP. Since a different amount of channel
information is fed back to the transmitter, the two precoding
schemes have different complexity and performance tradeoff
[1].

Let the fed back channel and phase information avail-
able for TRP and CPP be ĥ = [ĥ0, · · · , ĥL−1]T and p̂ =
[p̂0, · · · , p̂L−1]T , respectively. The precoder reverses and nor-
malizes the received data to form the code sequence c as

c = [c0, · · · , cL−1]T

=

{
1√
L

[p̂L−1, · · · , p̂0]T , for the CPP precoder,
1

||ĥ|| [ĥL−1, · · · , ĥ0]T , for the TRP precoder,

where xT and ||x|| denote the transpose and the 2-norm of
vector x, respectively. The lth antipodal data symbol b(l) with
unit power (i.e., E{b(l)2} = 1) is encoded by c and then
modulated by pulse waveform ws(t). As a result, the transmit
signal becomes

xs(t) =
∞∑

l=−∞
b(l)

L−1∑
j=0

cjws(t − lTs − j∆ − εl,j), (4)

where εl,j is the timing jitter for the jth emitted chip of the lth
data symbol and the symbol interval, Ts = M∆, is assumed
to be an integer multiple of the pulse width. The timing jitter
εl,j is modeled as an independent, identically distributed (i.i.d.)
random variable with respect to (l, j).

After passing through the channel and antennas at both
sides, the received signal is

y(t) =
∞∑

l=−∞
b(l)

L−1∑
j=0

L−1∑
k=0

cjhk ×

wr(t − lTs − (j + k)∆ − τ − εl,j) + n(t), (5)

where wr(t) is an unit-power received pulse waveform, τ is
the propagation delay, and n(t) is the zero-mean white Gaus-
sian noise process whose two-sided power spectral density
(PSD) is equal to N0/2. Please note that wr(t) is usually
different from ws(t) due to the antenna effect. Here, it is
assumed that wr(t) is known to the receiver.

If the channel knowledge at the transmitter is perfect, (i.e.,
cj = pL−1−j/

√
L for CPP or cj = hL−1−j/||h|| for TRP)

and εl,j = 0 for all values of l and j, we can show from (5)

that there will be a strong peak signal when indices j and k
in (5) satisfy j + k = L − 1. This is resulted from the fact
that all multipath components are coherently combined after
certain delay. The concentrated signal power at the receiver
simplifies the task of symbol decoding since the number of
rake fingers required to collect a sufficient amount of power
is greatly reduced.

For symbol detection, we consider a simple scheme where
the receiver uses only the peak signal to determine the transmit
symbol, i.e., the receiver matches the peak pulse waveform and
then takes a sample to estimate transmitted symbol b(l). That
is, after compensating propagation delay τ , we can obtain the
lth receive sample r[l] as

r[l] =
∫ ∞

−∞
y(t)wr(t − lTs − (L − 1)∆ − τ)dt. (6)

Please note that we do not examine the timing jitter effect at
the receiver since it can be jointly considered in εl,j . Finally,
the lth data symbol can be estimated via

b̂(l) = sign {r[l]} . (7)

III. CHANNEL ESTIMATION WITH TIMING JITTER

We study the channel estimation problem in the presence
of timing jitter in this section. A training-based estimation
scheme was proposed in [1] to identify the phase information
of the channel. However, no timing error has been considered
in previous work. Given the timing jitter model in Sec. II, we
need to revisit the channel estimation problem.

We modify the training-based channel estimation scheme in
[1] to obtain a new estimation scheme as described below.

1) After the channel is synchronized, N known channel
sounding pulses, bT (0), · · · , bT (N − 1), of a low duty
cycle are emitted by the transmitter so that the received
data of different transmit symbols do not overlap with
each other. The emitted training signal is of the form

xT (t) =
N−1∑
i=0

ws(t − iT )bT (i), (8)

where T (> L∆) is the time interval between two
consecutive pulses.

2) The receiver digitizes the incoming data by performing
the pulse waveform match and sampling at every ∆ time
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instance. All N discrete received signals are demod-
ulated and then averaged to reduce noise perturbation
before the channel (or phase) estimation task. Conse-
quently, the average kth sample is computed as

rT [k] =
1
N

N−1∑
l=0

bT (l) ∗
∫ ∞

−∞
yT (t)wr(t − lT − k∆ − τ − εl,k)dt, (9)

where

yT (t) =
N−1∑
i=0

bT (i)
L−1∑
j=0

hjwr(t − j∆ − iT − τ) + n(t),

(10)
and εl,k is the timing jitter at the kth channel sample of
the lth training symbol.

3) The tap and the phase of the kth channel path are
estimated by {

ĥk = rT [k],
p̂k = sign {rT [k]} .

(11)

It is worthwhile to mention that a one-bit analog-to-digital
converter (ADC) is sufficient for the phase estimation while
a high resolution ADC is needed to estimate the channel
response for the tap estimation. Thus, the CPP receiver has
a lower complexity than the TRP receiver.

IV. PERFORMANCE ANALYSIS

The performance of channel estimation and symbol decod-
ing is analyzed in this section. Since the system performance
depends on the received pulse waveform, wr(t) is assumed to
be a normalized, second derivative, mono-Gaussian pulse [6].
Mathematically, we have

wr(t) =
1√
E

w̄r(t),

where

w̄r(t) =

(
1 − 4π

(
t

tn

)2
)

e−2π( t
tn

)2

,

E =
∫ ∞

∞
w̄r(t)2dt,

and tn, which controls the time domain spread of the pulse
waveform (i.e., the pulse width), should be carefully selected
so that wr(t) ≈ 0 ∀|t| > ∆/2. Also, the autocorrelation
function of wr(t) is equal to [6]

φwr
(τ) =

∫ ∞

−∞
wr(t)wr(t − τ)dt

=

(
1 − 4π

(
τ

tn

)2

+
4π2

3

(
τ

tn

)4
)

e−π( τ
tn

)2

.

An example of φwr
(τ) with tn = 0.105 ns, which corresponds

to ∆ = 240 ps, is plotted in Fig. 2.
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Fig. 2. The autocorrelation function φwr (τ) for tn = 105 ps with ∆=240
ps.

A. MSE of both Channel and Phase Estimation

We first examine the performance of the proposed channel
estimation scheme in a timing jitter environment. By substi-
tuting (10) in (9) and performing some manipulations, we can
rewrite (9) as

rT [k] =
1
N

N−1∑
l=0

(
bT (l)

N−1∑
i=0

bT (i)×

L−1∑
j=0

hjφwr
(εl,k + (k − j)∆ + (l − i)T ) + nl[k]


 , (12)

where

nl[k] = bT (l)
∫ ∞

−∞
n(t)wr(t − lT − k∆ − τ − εl,k)

is the corresponding noise sample, which is a white Gaussian
random variable with zero-mean and variance N0/2. It is
denoted as

nl[k] ∼ N (0, N0/2). (13)

We conclude from Fig. 2 that φwr
(τ) �= 0 for −0.75∆ ≤

τ ≤ 0.75∆, which implies that

φwr
(εl,k ± k∆) ≈ 0 ∀k ∈ {±1,±2, · · · }, if |εl,k| ≤ ∆

4
.

(14)
The condition in (14) generally holds since the value of εl,k

is usually smaller than ∆. Hence, (12) can be approximated
as

rT [k] ≈ 1
N

(
N−1∑
l=0

φwr
(εl,k)

)
hk +

1
N

N−1∑
l=0

nl[k]. (15)

Next, we evaluate the mean-square-error (MSE) of two esti-
mation schemes given in (11) for a fixed channel realization.
If N is sufficiently large, by the Central Limit Theory [7], we
can have the following approximation

1
N

(
N−1∑
l=0

φwr
(εl,k)

)
∼ N (mφwr

,
1
N

V arφwr
), (16)
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and
1
N

N−1∑
l=0

nl[k] ∼ N
(

0,
N0

2N

)
, (17)

where mφwr
= E{φwr

(εl,k)} and V arφwr
=

E{φwr
(εl,k)2} − m2

φwr
are the mean and the variance of

random variable φwr
(εl,k), respectively. Furthermore, for the

pulse autocorrelation function considered in Fig. 2, mφwr
is

greater than zero since the range of jitter is usually small. The
linear combination of two Gaussian random variables is still
Gaussian so that rT [k] has the following distribution

rT [k] ∼ N
(

hkmφwr
,
h2

k

N
V arφwr

+
N0

2N

)
. (18)

Hence, the probability of the phase estimation error on the
kth phase component is evaluated as

Pek = Pr{pk �= p̂k} = Pr{rT [k] < 0
∣∣pk = 1}

= Q


 αkmφwr√

h2

N V arφwr
+ N0

2N


 , (19)

where Q(x) is defined as

Q(x) =
∫ ∞

x

1√
2π

e−x2/2dt. (20)

Conditioned on one fixed channel realization h, the MSE of
the phase estimation becomes

MSEp =
L−1∑
k=0

E{|pk − p̂k|2
∣∣h}

=
L−1∑
k=0

Pr{pk �= p̂k}(pk − p̂k)2 =
L−1∑
k=0

4Pek. (21)

It is worthwhile to point out that the error probability Pek in
(19) goes to zero asymptotically as N goes up. Therefore, we
know from (21) that the phase estimation error could be very
small as long as N is large enough.

On the other hand, the MSE of the proposed channel
estimation scheme in (11) is

MSEh =
L−1∑
k=0

E{|hk − ĥk|2
∣∣h} =

L−1∑
k=0

E{|hk − rT [k]|2∣∣h}.
(22)

By substituting (15) into (22) and performing some manipu-
lations, we have

MSEh =
L−1∑
k=0

(
α2

k(1 − mφwr
)2 +

1
N

V arφwr
+

N0

2N

)
. (23)

Therefore, we have

lim
N→∞

MSEh =
L−1∑
i=0

α2
i (1 − mφwr

)2 ≥ 0, (24)

as long as mφwr
�= 1. As compared with MSEp, MSEh could

not be arbitrarily small even if N goes to infinity.

B. Output SNR for CPP-UWB Systems

A similar approach can be used to analyze the output signal-
to-noise ratio (SNR) of CPP at r[l] when timing jitters exist.
Here, due to the space limitation, we consider the ISI-free
case only, i.e., Ts > L∆. In addition, the phase information
available for symbol precoding is assumed to be ideal in order
to simplify the analysis. After some manipulations, the discrete
sample for the lth transmit data from the CPP transmitter can
be expressed as

r[l] = b(l)
L−1∑
k=0

pk√
L

hkφwr
(εl,L−1−k) + n[l], (25)

where

n[l] =
∫ ∞

−∞
n(t)wr(t − lTs − (L − 1)∆ − τ)dt

∼ N (0, N0/2)

is the corresponding noise sample. The output SNR for CPP
is calculated as

SNRCPP =
E

{(
1√
L

∑L−1
k=0 αkφwr

(εl,L−1−k)b(l)
)2
}

E{|n[l]|2} .

With some mathematical manipulations, we have

SNRCPP =
πΩ

2LN0

(
1 − γL/2

1 − γ1/2

)2

m2
φwr

+

2Ω
LN0

1 − γL

1 − γ

(
V arφwr

+
(
1 − π

4

)
m2

φwr

)
. (26)

If the values of mφwr
and V arφwr

are fixed while the pulse
width approaches infinitesimal, i.e., ∆ → 0 (γ → 1), the
second term at the right-hand side of (26) becomes much
smaller than the first term at the same side. As a result, we
can get

lim
∆→0

SNRCPP ≈ πΩ
2LN0

(
1 − γL/2

1 − γ1/2

)2

m2
φwr

. (27)

It is clear that the output SNR for the CPP system degrades as
a factor of m2

φwr
as compared with the same system without

timing jitter. Please note that the above result is derived under
the assumption that the ideal phase information is available
for symbol precoding. The output SNR given in (27) can
be treated as an upper bound for realistic systems using the
estimated channel phase for precoding. The gap becomes tight
when the noise power reduces as studied in the next section.

V. SIMULATION RESULTS

Computer simulation is conducted to evaluate the perfor-
mance of TRP and CPP in a timing jitter environment. The
system parameters are: ∆ = 240 ps (tn = 0.105 ns), Γ = 7.5
ns (CM1) and L = 140. The timing jitter εl,j is modeled as
a truncated normal random variable whose range is limited
within [−∆/4,+∆/4]. The corresponding PDF for εl,j is
given by

fεl,j
(x) =

1
M

e−x2/2σ2
, (28)
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where

M =
∫ −∆/4

−∆/4

e−x2/2σ2
dx (29)

is a constant used to normalize the PDF function and σ that
controls the jitter power will be specified later. Simulation
results reported here are obtained as the average of 1000
independent channel realizations.

First, we compare the output SNR of CPP-UWB systems
using imperfect phase information for symbol precoding under
different jitter power. Here, 100 training symbols are used to
extract the channel phase information. To simulate different
jitter power, we choose σ to be 24 and 36 ps, respectively.
The SNR curves derived in (27), are plotted for performance
benchmarking. The output SNR as a function of the input
SNR value is plotted in Fig. 3. If the phase knowledge at
the transmitter is flawless and timing at both ends of the link
is perfect, there will be an approximately 3 dB loss at the
output SNR due to the partial channel information is utilized
for precoding [8]. Although the imperfect phase knowledge
introduces performance degradation, the gap does shrink as
SNR goes up for all jitter environments since the error power
in the phase estimation process becomes smaller. Moreover,
when the phase information is ideal, the performance loss
caused by different jitter power, namely, σ = 24 and 36 ps,
are 5.95 and 9.92 dB, respectively. This observation confirms
our theoretical results provided in (27).

Next, we simulate the decoding performance for both TRP
and CPP systems in the presence of timing jitter. Again,
we apply 100 training symbols to acquire either the channel
or phase information and keep all other system parameters
unchanged. The simulation results are shown in Fig. 4, where
the performance curves for both ideal CPP and TRP systems
without timing jitters are plotted for the reference purpose.
As shown in Fig. 4, the ideal performance of CPP is worse
than that of TRP since only partial channel information is
employed in the precoding process. The performance of both
precoding systems degrades as the timing jitter exists. The
performance gap between TRP and CPP reduces as the jitter
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Fig. 4. Comparison of the BER performance curves as a function of the
SNR value with different timing jitter power.

power increases. If we keep increasing the jitter power, e.g.,
σ = 36 ps, it is interesting to see that CPP even outperforms
TRP when SNR is greater than 22 dB. This can be explained
as follows. A stronger timing jitter also leads to a larger
SNR variation in TRP than CPP. This is especially true when
the noise power is weak. Since BER is very sensitive to
SNR, the averaged decoding performance of TRP is worse.
Therefore, we conclude that the BER performance of TRP is
more sensitive to the timing error than that of CPP.

VI. CONCLUSION AND FUTURE WORK

The performance of two UWB precoding methods, TRP
and CPP, in the presence of timing jitter was compared in
this work. It was shown that CPP provides a more robust
BER performance than TRP against the timing jitter when
the jitter becomes more significant. Our current study is still
preliminary. A more thorough comparison is being conducted
and will be reported in the near future.
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