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Abstract— The performance of MC-CDMA in the presence of
carrier frequency offsets (CFO) can be severely degraded due to
multiaccess interference (MAI). It is shown in this work that a
properly chosen subset of real Hadamard-Walsh or exponential
codes can achieve zero MAI in a CFO environment. For a channel
of length L and a number G of power of 2 with G ≥ L,
we prove that 1 + log2(N/G) Hadamard-Walsh codewords or
N/G exponential codewords can achieve zero MAI under any
CFO level. Simulation results are given to corroborate derived
theoretical results and evaluate the performance of MC-CDMA
with a variable number of users in a CFO environment.

I. INTRODUCTION

Multicarrier code division multiple access (MC-CDMA) has
emerged as a promising multiaccess technique for high data
rate communications. In MC-CDMA, symbols are spread into
multiple chips in the frequency domain, which are then mod-
ulated onto orthogonal subcarriers. MC-CDMA is inherently
more robust to inter symbol interference (ISI) than conven-
tional CDMA system due to the use of the OFDM (Orthogonal
Frequency Division Multiplexing) structure. Furthermore, the
full diversity gain can be achieved if the maximum ratio
combining (MRC) is used in MC-CDMA. However, the mul-
tipath and/or the carrier frequency offset (CFO) effects tend to
destroy orthogonality among users and lead to MAI. Thus, the
performance of MC-CDMA can be greatly degraded. Although
multiuser detection (MUD) techniques can mitigate MAI [7],
the diversity gain may be sacrificed since MRC is no longer
optimally performed. Besides, MUD requires channel state
information of all users, which is more difficult to estimate
in an MAI environment.

There has been research on MAI suppression using single
user detection techniques. For example, the structural dif-
ferences of interfering users caused by CFO were exploited
at the receiver to suppress MAI in [3]. However, this MAI
suppression technique imposes a computational burden on the
receiver since a DFT (Discrete Fourier Transform) of size
larger than N is required due to the oversampling of the
received signal in the frequency domain. Moreover, the MAI
suppression capability of the resultant MC-CDMA decreases
when the frequency shift of the interfering user is small [3].
In [1], groups of users share a set of subcarriers while full
frequency diversity of MC-CDMA system is preserved. MAI is
only present among users in the same group and is suppressed
via simplified multiuser detection. Another way to reduce MAI
is achieved by code design while keeping the structure of MC-
CDMA unchanged [6]. In [6], a code design method based
on real Hadamard-Walsh codes was proposed and shown to

achieve zero MAI in a multipath environment in MC-CDMA.
The main result in [6] can be stated below. If the length of
channel impulse response is L, we can partition N Hadamard-
Walsh codes into G subsets, where G is a power of 2 and
L ≤ G < N , N/G users will be free from MAI if a proper
set of N/G codewords is used in MC-CDMA. Moreover, it
was demonstrated that two particular users will not experience
any MAI even in the presence of CFO when all N/G users
are active.

In this work, we extend the results derived in [6] to a
CFO environment. That is, we propose code schemes for MC-
CDMA to completely eliminate MAI even in the presence of
CFO.

II. SYSTEM MODEL

Suppose that there are T users in an MC-CDMA system.
The block diagram of the uplink transmission of the ith user is
shown in Fig. 1. As shown in the figure, symbol xi is spread
by N codewords in the frequency domain to yield an N × 1
vector:

yi[k] = wi[k]xi, 0 ≤ k ≤ N − 1, (1)

where wi[k] is the kth component of the ith orthogonal code.
The spreading code of a user is the same along time. The
resulting block of length N is passed through an N×N IDFT
matrix. After the parallel-to-serial conversion, a cyclic prefix is
added to mitigate ISI. Then, symbols are fed into the multiple
access channel. Since the uplink scenario is considered, it is
reasonable to assume that each user experiences a different
fading channel with a different amount of CFO.

At the receiver, the cyclic prefix is removed. After the serial-
to-parallel conversion, the block is passed through the N ×N
DFT matrix. The kth component of the DFT output, ŷ, can
be expressed by

ŷ[k] =
T−1∑
j=0

rj [k] + e[k], (2)

where e[k] is the DFT of additive noise, and rj [k] is the
received signal contributed from the jth user due to the
channel fading and CFO effects. Suppose that user j has a
normalized CFO εj , i.e. the actual CFO normalized to the
subcarrier spacing. rj [k] can be written as [5], [6]

rj [k] = αjλj [k]yj [k]

+ βj

N−1∑
m=0,m �=k

λj [m]yj [m]
e−jπ m−k

N

N sin π(m−k+εj)
N

, (3)
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Fig. 1. The block diagram of the uplink transmission of the ith user in an MC-CDMA system.

where λj [m] is the mth component of N-point DFT of the
channel impulse response of user j, and

αj =
sin πεj

N sin πεj

N

ejπεj
N−1

N and βj = sin (πεj)ejπεj
N−1

N .

Note that, when there is no CFO, i.e. εj = 0, rj [k] =
λj [k]yj [k]. However, in the presence of CFO, there are two
terms. The first term is λj [k]yj [k] distorted by αj and the
second term is the ICI caused by CFO. Finally, the ith
transmitted symbol is detected by multiplying the received
symbol ŷ[k] of user i by w∗i [k] and performing MRC on
ŷ[k]w∗i [k], i.e.,

x̂i =
N−1∑
k=0

ŷ[k]λ∗i [k]w∗i [k]

= si +
T−1∑

j=0,j �=i

MAIi←j +
N−1∑
k=0

e[k]λ∗i [k]w∗i [k], (4)

where si consists of the distorted chip and the ICI caused by
CFO for the desired user given by

si =
N−1∑
k=0

ri[k]λ∗i [k]w∗i [k], (5)

and MAIi←j is the MAI of user i due to the jth user’s CFO

MAIi←j =
N−1∑
k=0

rj [k]λ∗i [k]w∗i [k]. (6)

Using Eqs. (3) and (6), we can show that the MAI term is
given by

MAIi←j = MAI
(0)
i←j + MAI

(1)
i←j , (7)

where

MAI
(0)
i←j = αjxj

N−1∑
k=0

λj [k]wj [k]λ∗i [k]w∗i [k], (8)

and

MAI
(1)
i←j = βjxj

N−1∑
m=0,m �=k

λj [m]yj [m]

{

e−jπ m−k
N

N sin π(m−k+εj)
N

λ∗i [k]w∗i [k]

}
. (9)

Eq. (8) can be expressed in matrix form as [6]

MAI
(0)
i←j = αjxjh

†
i F†0W

†
iWjF0︸ ︷︷ ︸
Aij

hj , (10)

where F0 = F
(

IL

0

)
N×L

, hi = (hi(0) · · ·hi(L − 1))T ,

and
Wi = diag(wi[0]wi[1] · · · wi[N − 1]),

and where F is the N ×N DFT matrix whose element at the
kth row and the nth column is [F]k,n = 1√

N
e−j 2π

N kn. Also,
† in Eq. (10) denotes the matrix Hermitian operation. It was
shown in [6] that MAI

(1)
i←j given by (9) can be rewritten as

MAI
(1)
i←j = βjxj

N−1∑
p=1

gj(−p)

{
(h(p)

i )† F†0(W
(p)
i )†WjF0︸ ︷︷ ︸
C

(p)
ij

hj

}
,

(11)
where

gj(p) =
e−jπ p

N

N sin π(p+εj)
N

, (12)

W(p)
i = diag(wi[p] · · ·wi[N − 1]wi[0] · · ·wi[p − 1]), (13)

and

h(p)
i = (hi(0)e−j 2π0p

N · · ·hi(L − 1)e−j
2π(L−1)p

N )T . (14)

III. ORTHOGONAL CODES FOR MAI-FREE MC-CDMA
WITH CFO

A. Requirements for MAI-free Codes

Theoretical requirements for codes to produce an MAI-free
MC-CDMA system in the presence of CFO are implied by
Eqs. (10) and (11). That is, to have zero MAI in a frequency
selective channel with CFO, we demand

MAI
(0)
i←j = 0 and MAI

(1)
i←j = 0.

that Aij and C(p)
ij must be zero matrices of dimension L×L

for all i �= j to achieve MAI-free in a CFO environment [6].
Let

Bij = F†Ri,jF, Ri,j = W†
iWj ,

D(p)
ij = F†R(p)

i,j F, R(p)
i,j = (W(p)

i )†Wj .

It is well known that Bij and D(p)
ij are circulant matrices [2].

Therefore, their first columns, i.e., (bi,j(0) · · · bi,j(N − 1))T

and (di,j(0) · · · di,j(N − 1))T are the N -point IDFT of ri,j

and r(p)
i,j respectively, where

ri,j = (ri,j [0] · · · ri,j [N − 1])T , (15)

and
r
(p)
i,j [k] = w

(p)
i [k]wj [k], k = 0, 1, ...N − 1. (16)
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Since Aij and C(p)
ij are L × L upper left submatrices of

Bij and E(p)
ij respectively, conditions MAI

(0)
i←j = 0 and

MAI
(1)
i←j = 0 are equivalent to{

bi,j(n) = 0, 0 ≤ n ≤ L − 1,
bi,j(N − n) = 0, 1 ≤ n ≤ L − 1,

(17)

and {
di,j(n) = 0, 0 ≤ n ≤ L − 1,

di,j(N − n) = 0, 1 ≤ n ≤ L − 1,
(18)

respectively.
Let w[k], 0 ≤ k ≤ N − 1, be any codeword of length N

and G < N be any integer that divides N . For presentation
convenience, we define periodic and antiperiodic codewords
as follows. We say that the codeword is periodic with period
N/G if

w[((k + gN/G))N ] = w[k], (19)

where 0 ≤ k ≤ N − 1, 0 ≤ g ≤ G − 1, and ((n))N

denotes n modulo N . We say the codeword is antiperiodic
with antiperiodic N/G if

w[((k + N/G))N ] = −w[k]. (20)

Lemma 1: Let wi = (wi[0] · · ·wi[N − 1])T , be any periodic
or antiperiodic codeword with period or antiperiod N/G.
Then, w(p)

i is periodic or antiperiodic if wi is periodic or
antiperiodic, respectively, with the same period or antiperiod
N/G.

Proof: By the definition of w(p)
i , we have

w
(p)
i [k] = wi[N − p + k]. (21)

If wi is periodic with period N/G, we have

w
(p)
i [((k + gN/G))N ] = wi[((N − p + k + gN/G))N ]

= wi[N − p + k] = w
(p)
i [k].

Similarly, if wi is antiperiodic with antiperiod N/G, we have

w
(p)
i [((k + N/G))N ] = wi[((N − p + k + N/G))N ]

= −wi[N − p + k] = −w
(p)
i [k],

for 0 ≤ g ≤ G − 1 and 0 ≤ k ≤ N − 1.

B. Hadamard-Walsh Codes

An N×N Hadamard matrix HN with N = 2r, r = 1, 2, ...,
can be recursively generated by the Hadamard matrix of order
2, i.e.,

HN = H2 ⊗ HN/2 =
(

HN/2 HN/2

HN/2 −HN/2

)
, (22)

where ⊗ is the Kronecker product and

H2 =
(

+1 +1
+1 −1

)
. (23)

Suppose that the channel length is L. We divide HN equally
into G subsets, where G = 2q with q being a positive
integer and N > G ≥ L so that each subset has N/G
codewords. The first subset, denoted by G0, has codewords

{w0,w1, ...,wN
G−1}. We can further divide codewords in G0

into two disjoint subsets of equal size as

G00 = {w0, ...,w N
2G−1} and G01 = {w N

2G
, · · · ,wN

G−1}.
Then, we have the following properties.
Lemma 2: For any codeword wi in G01 and any codeword
wj in G00, we have MAI

(0)
i←j = MAI

(1)
i←j = 0.

proof: It was shown in [6] that, if wi and wj are in two
disjoint subsets Gg , g = 0, 1, ...G − 1, MAI

(0)
i←j = 0.

Since G01 and G01 are disjoint subsets of G0, we have
MAI

(0)
i←j = 0. Next, to prove MAI

(1)
i←j = 0, we would like

to show Eq. (18) is satisfied. Recall r
(p)
i,j [k] = w

(p)
i [k]wj [k],

k = 0, 1, ...N − 1. By taking the IDFT of r(p)
i,j , we have

r
(p)
i,j (n) =

1
N

N−1∑
m=0

r
(p)
i,j [m]ej 2π

N mn. (24)

Let m = k + gN/G, 0 ≤ k ≤ N/G − 1 and 0 ≤ g ≤ G − 1,
we can rewrite Eq. (24) as

r
(p)
i,j (n) =

1
N

N/G−1∑
k=0

G−1∑
g=0

r
(p)
i,j [k + gN/G]ej 2π

N (k+gN/G)n.

(25)
Since codewords wi and wj belong to G0, they are among the
first N/G columns of the Hadamard-Walsh matrix and formed
by repeating the upper left N/G×N/G submatrix of HN G
times. Hence, they are periodic with period N/G. By Lemma
1, w(p)

i is also periodic with period N/G. Since the product of
two periodic functions whose periods are the same is another
periodic function with the same period, we have

r
(p)
i,j [k + gN/G] = r

(p)
i,j [k]. (26)

Then, we can rewrite Eq. (25) as

r
(p)
i,j (n) =

1
N

N/G−1∑
k=0

r
(p)
i,j [k]ej 2π

N kn
G−1∑
g=0

ej 2π
G gn, (27)

where 0 ≤ k ≤ N/G − 1 and 0 ≤ g ≤ G − 1. Since

G−1∑
g=0

ej 2π
G gn =

{
G, n = 0,±G, · · ·
0, otherwise,

(28)

we have

r
(p)
i,j (n) =

{
G
N

∑N/G−1
k=0 r

(p)
i,j [k]ej 2π

N kn, n = 0,±G, · · ·
0, otherwise.

To prove r
(p)
i,j (0) = 0, we need to show r(p)

i,j has an equal

number of 1 and −1. In general, r(p)
i,j does not belong to

the Hadamard-Walsh matrix whose codewords have an equal
number of 1 and −1. For example, for N = 8, w(1)

8 ·w7 has
two −1 and six 1, where · denotes the component-wise vector
product. However, if wi ∈ G01 and wj ∈ G00, r(p)

i,j does have
an equal number of 1 and −1 as show below. According to
(22), codewords in G00 are the first N/2G columns of HN

and obtained by repeating the N/2G × N/2G submatrix 2G
times. Hence, any codeword wj ∈ G00 is periodic with period
N/2G. Similarly, we can show that any codeword wi ∈ G01
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is antiperiodic with antiperiodic N/2G. By Lemma 1, w(p)
i

is also antiperiodic with the same antiperiod. Therefore, for
0 ≤ k ≤ N − 1, we have

w
(p)
i [((k + N/2G))N ]wj [((k + N/2G))N ] =

−wi[((N − p + k))N ] wj [k] = −w
(p)
i [k]wj [k].

Hence, r(p)
i,j is antiperiodic with antiperiod N/2G. It can be

easily shown that any antiperiodic code has an equal number
of ±1. Thus, r

(p)
i,j (0) = 1

N

∑N−1
k=0 r

(p)
i,j [k] = 0.

Let us give an example with N = 16 and L = 2. By
choosing G = 2, G00 = {w0,w1,w2,w3} and G01 =
{w4,w5,w6,w7}. By Lemma 2, any codeword chosen from
G01, achieves zero MAI with respect to any codeword from
G00. On the other hand, we will not have an MAI-free system
when both codewords are chosen from G00 (or both from
G01). For instance, MAI2←3 �= 0 or MAI4←5 �= 0 for
N = 16 and L = 2.

Note that Lemma 2 does not identify a subset of codewords
that can be assigned to all active users while keeping the sys-
tem MAI-free. This choice will be examined in the following
theorem. In particular, we want to determine such an MAI-free
set from subsets of G0 and specify the number of codewords
in the resulting MAI-free set.
Theorem 1: For a channel of length L and G = 2q ≥ L, there
are 1+log2(N/G) codewords from N Hadamard-Walsh codes
that will lead to an MAI-free MC-CDMA system under any
CFO level.
proof: We form subsets G0, G00 and G01 as described above.
To build an MAI-free subset, we must choose only one of
the codes from G01. To determine the remaining codes from
G00, we divide G00 into two subsets G000 and G001, each of
N/4G codes, by following the same procedure. Then, we can
choose one from G001, since it can be proved by arguments
similar to that in Lemma 2 that any codeword from G001

is MAI-free from any codeword in G000. By repeating this
procedure, we can obtain an MAI-free set. Since the division
of a subset generates one codeword to be included in the MAI-
free codeword set in each stage, we have log2(N/G) codes
in the MAI-free set. Furthermore, each of the two subsets
has only one codeword in the last stage, we can add both
codewords (w0 and w1) to the MAI-free set. Thus, the total
number of MAI-free codewords is 1 + log2(N/G).

C. Exponential Orthogonal Codes

Since a relatively small number of users can be MAI-free
in a channel with CFO using Hadamard-Walsh codes, we look
for other codes for this purpose. In this section, we study the
exponential codes of size N , which is of the following form

wi[k] = ej 2π
N ki, k, i = 0, 1, ..., N − 1. (29)

Then, the MAI-free property of this code can be stated below.
Theorem 2: Let the channel length be L and G = 2q ≥
L. There exists N/G exponential codewords such that the
corresponding MC-CDMA is MAI free in a CFO environment.
Proof: Consider two codewords with indices i and i′. If we
let i− i′ = mG, m = 1, 2, ..., then, for k = 0, 1, ...N − 1 and

g = 0, 1, ...G − 1, we have

ri,j [k + gN/G] = ej 2π
N (k+gN/G)(i−i′) =

ej 2π
N k(i−i′)ej 2π

G g(i−i′) = ej 2π
N k(i−i′) = ri,j [k], (30)

and

r
(p)
i,j [k + gN/G] = ej 2π

N (N−p)iej 2π
N (k+gN/G)(i−i′) =

ej 2π
N (N−p+k)ie−j 2π

N (k)i′ej 2π
G g(i−i′) = r

(p)
i,j [k]. (31)

By using the same procedure as Lemma 2, we can show

r
(p)
i,j (n) =

{
G
N

∑N/G−1
k=0 r

(p)
i,j [k]ej 2π

N kn, n = 0,±G, ...

0, otherwise,
(32)

and

ri,j(n) =
{

G
N

∑N/G−1
k=0 ri,j [k]ej 2π

N kn, n = 0,±G, ...
0, otherwise.

(33)

Furthermore, for i �= j, we have

ri,j(0) =
N−1∑
k=0

ri,j [k] =
N−1∑
k=0

ej
2π(i−j)

N k = 0, (34)

and similarly, r
(p)
i,j (0) = 0. Thus, Eqs. (17) and (18) hold.

Since there are N/G codewords such that i − i′ = mG,
m = 1, 2, ..., the total number of MAI-free codewords from
N exponential codes is N/G.

The exponential codes are especially valuable as training
sequences in a MIMO-OFDM system as they can decouple
inter-antenna interference in a CFO-free channel [4]. Due
to Theorem 2, we can use exponential codes as training
sequences for multi-user MIMO-OFDM systems in a CFO
environment to eliminate both inter-antenna interference and
MAI.

IV. SIMULATION RESULTS

The Monte Carlo simulation was conducted to corroborate
theoretical results derived in the last section. In the simula-
tion, channel taps were generated as independently identically
distributed (i.i.d.) random variables of unit variance. Every
user had his/her own CFO value, and the worst case was
considered. That is, every user was randomly assigned by a
CFO value of either ε or −ε. The MAI power was normalized
by

∑N−1
k=0 |λi[k]|2 since the desired signal was scaled by the

same amount. In all examples, we suppose N = 16, L = 2
and the CFO value is fixed to be ±0.1.
Example 1. The values of MAIi←j power for all Hadamard-
Walsh codewords in G0 are tabulated in Table I. When
the MAI value is below −290 dB, it is equivalent to zero
numerically. We have several interesting observations from
Table I. First, users with codewords w0 and w1 will be
mutually MAI-free with other users. This result is not a
surprise since it was already shown in the proof of Theorem
1. Second, there is no MAI among any two users, if one uses
a codeword from G01 = {w4,w5,w6,w7} while the other
from G00 = {w0,w1,w2,w3}. This result validates Lemma
2. Third, if users use codewords from G01 (or from G00),
MAI may not be zero. For example, we see MAI4←6 =
−27.6 dB and MAI5←7 = −45.0 dB. Finally, we observe
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{w0,w1,w2,w4} or {w0,w1,w3,w7} provides two subsets
of MAI-free codewords in the presence of CFO. This confirms
our claim that there are 1 + log2(16/2) = 4 users that will be
mutually MAI-free.

TABLE I

MAIi←j POWER (dB) AS A FUNCTION OF HADAMARD-WALSH

CODEWORDS IN G0 .

w0 w1 w2 w3 w4 w5 w6 w7

w0 × -324 -324 -325 -325 -328 -326 -328
w1 -325 × -325 -324 -328 -324 -328 -326
w2 -325 -325 × -30.1 -326 -328 -324 -327
w3 -325 -325 -30.1 × -328 -326 -328 -324
w4 -324 -329 -326 -328 × -33.1 -27.6 -53.6
w5 -328 -324 -328 -326 -33.1 × -54.25 -45.0
w6 -326 -329 -324 -328 -27.6 -54.2 × -33.1
w7 -328 -326 -328 -323 -53.6 -45.0 -33.1 ×

Example 2. Here we focus on the performance of exponential
codes. The MAI power in the unit of dB between users
with different codewords is shown in Table II. According to
Theorem 2 in Sec. III, users with even indexed codewords,
i.e, {w0,w2,w4,w6,w8,w10,w12,w14} are mutually MAI-
free. This is illustrated in the top half of Table II. We also ob-
serve that even though users with odd-indexed codewords i.e.,
{w1,w3,w5,w7,w9,w11,w13,w15} may have MAI with
even-indexed codewords, this occurs sparsely. For example,
codeword w0 has strong MAI with two codewords w1 and
w15, codeword w2 has strong MAI with two codewords w1

and w3, etc.

TABLE II

MAIi←j POWER (dB) AS A FUNCTION OF EXPONENTIAL CODEWORDS.

w0 w2 w4 w6 w8 w10 w12 w14

w0 × -317 -306 -303 -309 -301 -294 -295
w2 -317 × -317 -302 -308 -309 -297 -291
w4 -306 -317 × -306 -306 -302 -298 -297
w6 -303 -302 -306 × -311 -302 -298 -297
w8 -310 -308 -305 -311 × -305 -298 -299
w10 -300 -308 -303 -302 -304 × -296 -293
w12 -295 -297 -298 -303 -298 -297 × -302
w14 -296 -291 -297 -301 -299 -293 -302 ×
w1 -18.6 -19.0 -309 -302 -311 -304 -296 -292
w3 -306 -18.4 -12.9 -306 -306 -301 -300 -293
w5 -305 -309 -16.2 -19.2 -304 -304 -297 -304
w7 -309 -299 -301 -19.6 -16.3 -299 -298 -308
w9 -304 -304 -306 -302 -16.6 -15.3 -296 -292
w11 -293 -304 -304 -297 -302 -18.2 -11.1 -296
w13 -297 -303 -306 -305 -307 -300 -19.9 -19.0
w15 -15.3 -297 -298 -303 -307 -302 -300 -17.6

Example 3. In this example, we evaluate the system per-
formance when the number of users goes beyond that
maximum number of MAI-free codewords as specified in
Theorems 1 and 2. The total MAI power for user i
from all other users, denoted by MAIi, is calculated by

1∑ N−1
k=0 |λi[k]|2

∣∣∣∑T−1
j=0,j �=i MAIi←j

∣∣∣2. The average MAI power

of the system is the averaged value of T MAI values,

1
T

∑T−1
i=0 MAIi, where T is the number of active users in

the system.
The code priority for Hadamard-Walsh codes is given below.

First, we choose the codeword set A = {w0,w1,w2,w4},
which have zero MAI as shown in Example 1. Then, we add
more codewords as the number of users increases. First we add
the remaining code in G00 i.e. w3. Then, we see from Table I
that we should choose from G01 = {w4,w5,w6,w7}. After
including w5, w6, w7 in A, we add codewords w8, w9, w10

and w11 to A.
Next, we consider the code priority for exponential codes.

First, we choose the set of exponential codes with odd indices,
{w1,w3,w5,w7,w9,w11,w13,w15} as the main set since
they are mutually MAI-free according to Theorem 2. To
increase the user capacity of MC-CDMA system, we add some
of the codes with even indices. From Table II, we see that any
user with even-indexed codeword has zero mutual MAI from 6
users with odd-indexed codewords. Thus, we add w4,w6,w8,
and w10.

We plot the average MAI according the code priority de-
scribed above in Fig 2. When the MC-CDMA has a light load
(i.e. with less than 5 users), both codes give an excellent MAI
free performance. When the number of users is between 5 and
8 The exponential codes clearly outperform the Hadamard-
Walsh codes. Finally, when the user number is 9 or above,
both codes give similar MAI performance again.
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Fig. 2. Average MAI as a function of the number of users with N = 16,
L = 2 and CFO = ±0.1.
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