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Abstract— A precoding technique applied to symbols trans-
mitted in an ultra-wideband (UWB) system was proposed in [1],
which can concentrate the signal power at the receiver to facilitate
data detection. The design of the optimal codeword for precoding
is investigated in this work. After the problem is formulated,
we examine its solution in the full-rank space as well as the
reduced-rank subspace to get different tradeoff between detection
performance and the amount of feedback messages. Furthermore,
we propose two subspace selection schemes that are suitable for
different channel conditions. The codeword obtained from this
work improves the performance of the result in [1] significantly
at the price of a larger amount of feedback messages.

I. INTRODUCTION

There has been growing interest in applying the time-
reversal prefiltering (TRP) to the ultra-wideband (UWB) com-
munication system [2], which is also known as pre-RAKE
diversity combining. The TRP transmitter prefilters the trans-
mit data with the time-reversed order of the channel impulse
response so that the received signal power is well concentrated
at the receiver. As compared to the conventional UWB system
that employs tens or even hundreds of RAKE fingers at the
receiver [3], the number of RAKE fingers required for symbol
decoding is greatly reduced in TRP-UWB so that the operating
power is saved. This is especially important for mobile devices
whose battery power is usually limited.

The TRP-UWB system demands the channel information
available to the transmitter. It is however challenging to
feedback the entire channel information from the receiver to
the transmitter due to the very large number of channel taps in
an UWB channel [3]. A novel UWB transceiver system, called
the channel-phase-precoded (CPP) UWB, was proposed in [1]
to overcome this problem. The CPPUWB transmitter encodes
the data symbol with the reversed binary channel phase that
takes values of 1 and -1. Consequently, each antipodal phase
information of carrierless UWB channel taps is represented by
one bit, and the feedback overhead is significantly reduced.
The use of the reversed phase codeword leads to concentrated
received signal power since all channel taps are coherently
combined.

1The research has been funded by the Integrated Media Systems Center,
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Agreement No. EEC-9529152. Any Opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do
not necessarily reflect those of the National Science Foundation.

By exploiting the concentrated power, the CPPUWB system
can achieve a higher data rate by shortening the symbol
interval of the transmit data while maintaining a tolerable
intersymbol interference (ISI) level. Furthermore, it is possible
to improve the system performance by selecting the codeword
length to maximize the output signal-to-interference ratio
(SIR). A fast search algorithm to determine the optimized
code length was investigated in [4]. The CPPUWB system with
codeword length optimization (CPPUWB/CLO) can reduce the
feedback amount furthermore since the optimal code length is
usually less than the channel response length. The CPPUWB
system is suitable for the case where the feedback channel
capacity is parsimonious. In this work, we consider a more
generic precoding technique for UWB. That is, the binary
codeword to represent the channel phase appears to be restric-
tive. Instead, we may consider a codeword whose elements
can be real numbers in theory (which will be represented
by m-bit data in practice), and call the resultant system the
precoded ultra-wideband (PUWB) system. The purpose of
using multiple bits for each codeword element (rather than
1 bit) is to achieve a higher data detection rate.

After the problem formulation, we first show the construc-
tion of the optimal codeword using the channel information
to minimize the mean square errors (MSE) at the decoder
in a PUWB system. The information is then fed back to
the transmitter. This full-rank approach is however expensive
in both computational complexity and feedback overhead. To
save these costs, the subspace approach (or the reduced-rank
algorithm [5]) is explored as an alternative. That is, the signal
is projected onto a subspace to reduce its dimension and
the optimal codeword is selected from this subspace. The
complexity and the feedback overhead can be significantly
reduced via the use of the subspace approach. In general, the
subspace technique demands the basis information available
at the transmitter for codeword reconstruction. However, when
the specific basis is used, we show that the receiver only needs
to send the channel phase information back to the transmitter
for codeword reconstruction.

The rest of this work is organized as follows. The system
model is presented in Sec. II. The full-rank and the reduced-
rank vector codeword design problems are examined in Sec.
III and Sec. IV, respectively. The issue of basis selection is
discussed in Sec. V. Simulation results are shown in Sec. VI.
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Fig. 1. The block diagram of the proposed PUWB system.

II. SYSTEM MODEL

The carrierless tap-delay-line (TDL) channel model given
in [6] is adopted here. It can be written as

h(t) =
L−1∑
i=0

hiδ(t − i∆) =
L−1∑
i=0

piαiδ(t − i∆), (1)

where hi = piαi, L is the total number of the signal path,
δ(x) is the Dirac delta function of x, ∆ is the multipath
resolution which is set as the time domain pulse width, pi ∈
{+1,−1} with equal probability is the ith phase component,
and the corresponding amplitude component αi is modeled as
a Rayleigh random variable whose probability density function
(PDF) is

fαi
(x) =

x

σ2
i

e−x2/2σ2
i . (2)

Furthermore, the power of each tap decreases exponentially
with respect to its index, i.e.,

E{α2
i } = 2σ2

i = Ωγi, (3)

where E{x} is the expectation of random variable x, Ω is
the power of the first tap and γ = e−∆/Γ. Four different
decay time constants Γ corresponding to four different channel
models (CM 1∼CM 4) in [7] were given in [6]. In the current
context, the coherent time of the channel is assumed to be long
enough so that the channel is invariant during the transmission
of one package of data symbols.

The block diagram of the PUWB system is shown in Fig.
1. The ith antipodal data symbol b(i) with power P (i.e.,
E{b(i)2} = P ) is encoded by codeword c = [c0, · · · , cL−1]T

and then modulated by pulse waveform ws(t). Consequently,
the transmit signal is of the following form

xs(t) =
∞∑

i=−∞
b(i)

L−1∑
j=0

cjws(t − j∆ − iTs), (4)

where Ts = M∆ is the symbol interval, which is assumed
to be an integer multiple of the pulse width. Note that the
main difference between CPPUWB in [1] and the current
framework is the contraint on codeword c = [c0, · · · , cL−1]T .
Each element of c takes the value of 1 or −1 in CPPUWB
but any real number in PUWB.

At the receiver, the signal is distorted by the multipath chan-
nel model and contaminated by the additive white Gaussian
noise (AWGN). The receiver digitalizes the received signal
by performing the pulse waveform matching and chip-rate

sampling and then amplifies the resultant digital signal by a
factor of g. The amplifier is used to strike a balance between
the channel gain and noise power suppression [8]. As a result,
the matrix representation of the discrete received signal can
be expressed as

r(i) = gHcb(i) + gI(i) + gn(i), (5)

where H is the (2L − 1) × L Toeplitz matrix whose first
column contains h = [h0, · · · , hL−1]T as the first L elements
and zero elswhere, r(i) = [r0(i), · · · , r2L−2(i)]T , I(i) =
[I0(i), · · · , I2L−2(i)]T is the interference vector for transmit
symbol b(i), and n(i) = [n0(i), · · · , n2L−2(i)]T is the AWGN
vector for the same transmit symbol, and each element of
n(i) has zero mean and covariance N0/2. To decode the
ith transmit symbol, the receiver directly applies the decision
threshold to rL−1(i), namely,

b̂(i) = sign{rL−1(i)}. (6)

It is worthwhile to point out that, when Ts ≥ L∆, the received
signal used to decode rL−1(i) contains no ISI. On the other
hand, if Ts < L∆, rL−1(i) contains signals from b(i) as well
as b(i − L1), · · · , b(i − 1) and b(i + 1), · · · , b(i + L1) where
L1 = �(L − 1)/M� and �x� is the floor function of x. The
system performance degrades due to the presence of ISI at
rL−1(i).

III. OPTIMAL CODEWORD DESIGN

To improve the system performance, we consider the op-
timal codeword design problem in this section. That is, we
seek codeword copt such that the mean square error (MSE)
at the receiver output is minimized. If the channel impulse
response is known to the receiver, the receiver can compute
the optimal codeword and then send it back to the transmitter.
Since only one received sample, i.e., rL−1(i), is used to decode
the ith transmit data, the receiver can reduce its sampling rate
by taking one sample in every Ts interval in a synchronized
environment. Then, we can further simplify (5) to be

rL−1(i) = gcT H̄b(i) + gnL−1(i), (7)

where b(i) = [b(i + L1), · · · , b(i), · · · , b(i − L1)]T and H̄ is
an L× (2L1 +1) matrix formed by transposing matrix H and
keeping the (L + kM)th column, where −L1 ≤ k ≤ L1, in
HT , and removing all other irrelevant columns. Thus, being
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conditioned on one channel realization h, the mean square
error (MSE) between b(i) and rL−1(i) can be written as

ε(c, g) = E
{|b(i) − rL−1(i)|2

∣∣h}
= E

{|b(i) − gcT H̄b(i) − gnL−1(i)|2
∣∣h} . (8)

The optimal codeword, copt, and the amplifier gain, gopt, are
chosen to minimize the value of ε subject to the unit-power
constraint on c, i.e.,

copt, gopt = arg min
c,g

ε(c, g
)

s.t. cT c = 1. (9)

Eq. (9) can be solved by the method of Lagrange multipliers
[8]. After some manipulation, we get

copt =
1

gopt

(
H̄H̄T +

N0

2P
IL

)−1

h̄ (10)

and

gopt =

√
h̄T
(

H̄H̄T +
N0

2P
IL

)−2

h̄, (11)

where h̄ = [hL−1, · · · , h0]T is equal to the reversed order of
channel vector h and IL is the identity matrix of size L × L.
The corresponding minimized MSE (MMSE) εmin achieved
is

εmin = ε(copt, gopt) = P

(
1 − h̄T

(
H̄H̄T +

N0

2P
IL

)−1

h̄

)
.

Although the above problem formulation is similar to that
in [8], our objective is different. The optimal prefilter was
designed to suppress all off-peak signals in [8]. However, it
may not minimize the output MSE in our case. In contrast, our
optimal codeword is designed to minimize the output MSE.

The bit error rate improves a lot over that of the CPPUWB
system by the use of the optimal codeword in the PUWB
system. This is confirmed in Sec. VI. However, the complexity
required to compute the optimal codeword as given in (10)
involves the inversion of an L×L matrix. Furthermore, since
it takes more bits to represent copt in PUWB than that for the
binary channel phase codeword in CPPUWB, the size of the
feedback message increases, too.

IV. SUBSPACE-BASED CODEWORD DESIGN

We consider the optimal codeword design problem in a
subspace using the reduced-rank algorithm [5] in this section.
The codeword design problem can be projected onto a lower
dimensional subspace. That is, we choose an L × d matrix,

Md = [e0, · · · , ed−1],

whose columns are orthonormal to each other. Then, the
optimal codeword in the d-dimensional subspace spanned by
Md can be found by

cd =
1
gd

(
H̄dH̄T

d +
N0

2P
Id

)−1

h̄d, (12)

where

gd =

√
h̄T

d

(
H̄dH̄T

d +
N0

2P
Id

)−2

h̄d, (13)

and h̄d = MT
d h̄ and H̄d = MT

d H̄ are projections of h̄ and H̄
onto Md, respectively. Since the size of the square matrix in
(12) to be inverted is only d × d, its computational cost is
lower.

Once codeword cd is found, the receiver can send it back
to the transmitter with an overhead lower than sending copt.
After receiving cd, the transmitter can synthesize the L × 1
codeword c̃d by

c̃d = Mdcd. (14)

Although cd minimizes the output MSE in the subspace
spanned by Md, codeword c̃d in (14) is no longer optimal
with respect to the original full-rank space since some useful
signal power is dropped by subspace filtering. Furthermore,
both the transmitter and the receiver need the information of
Md. It is however costly to send the basis information from
the receiver to the transmitter.

To address this problem, we use a specific basis that can be
computed easily with very little feedback information. Let us
first rewrite h̄ as

h̄ = P̄ā, (15)

where P̄ = diag[pL−1, · · · , p0] is a diagonal matrix whose
ith diagonal component is the phase of the (L − i)th path
takes values of +1 or −1 and ā = [αL−1, · · · , α0]T is the
reversed order of the amplitude vector. Let Rā denote the
autocorrelation of ā, i.e.,

Rā = E{āāT } = Ω




β2(L−1) αβ2L−3 · · · αβL−1

αβ2L−3 β2(L−2) · · · αβL−2

...
...

. . .
...

αβL−1 αβL−2 · · · 1




= EāΛāET
ā , (16)

where α = π/4, β = γ1/2 = e−∆/2Γ,

Λā = diag[λ0, . . . , λL−1]

is the diagonal matrix of L eigenvalues with λ0 ≥ · · · ≥
λL−1, and Eā = [ẽ0, · · · , ẽL−1] whose columns are the
corresponding eigenvectors. The above equation gives the
eigen-decomposition of Rā. The specific basis set M can be
expressed as

M = [e0, · · · , eL−1] = [P̄ẽ0, · · · , P̄ẽL−1], (17)

where em = P̄ẽm, 0 ≤ m ≤ L − 1. Md collects d out of L
column vectors from M, i.e.,

Md = [ei0 , · · · , eid−1 ],

where i0 < · · · < id−1.
We proceed with the following three steps to construct Md.

1) The L-bit channel phase information is fed back from
the receiver to the transmitter to get diagonal matrix P̄
as shown in (15).

2) ∆ is specified as the system parameter and Γ can be
determined owing to an excellent ranging capability of
the UWB signal [9]. Thus, the transmitter can synthesize
correlation matrix Rā and decompose it for ẽi, 0 ≤ i ≤
L − 1.
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3) Indices of d selected columns should be sent from the
receiver to the transmitter.

The selection of d from L basis vectors will be detailed in the
next section.

V. SUBSPACE SELECTION SCHEMES

The choice of d basis vectors, ei0 , · · · , eid−1 , for subspace-
based codeword design plays an important role in the ultimate
system performance. In this section, we propose two subspace
selection schemes.

A. Scheme A: Sequential Greedy Search Algorithm

Generally speaking, the optimal signal subspace that mini-
mizes the output MSE demands an exhaustive search among
all possible subspaces whose cardinality is

(
L
d

)
. Since L is

usually a large number, the associated computational cost of
exhaustive search is too high to be attractive. A suboptimal
basis selection scheme with less complexity is more desired.
A greedy search algorithm is proposed below.

To find the first basis vector, we search all possible basis
vectors and pick up the one that provides the minimum MSE,
i.e.,

i0 = arg min
i∈I0

P

(
1 − a(i)

(
||f(i)||2 +

N0

2P

)−1

a(i)

)
, (18)

where I0 = {0, · · · , L−1}, a(i) = eT
i h̄, f(i) = H̄T ei and ||x||

is the 2-norm of vector x. Next, if m (m < d) basis vectors
are already selected and Mm = [ei0 , · · · , eim−1 ]. Let eim

be
the next basis vector to add so that the corresponding basis set
is Mm+1 = [Mm, eim

]. The MSE in the (m + 1)-dimensional
subspace is shown in (19).

Note that (19) can be further simplified by applying the
block matrix inversion formula [10] as

ε
(m+1)
min = ε

(m)
min − PCim

ζim
, (20)

where

Cim =

(
||f(im)||2 +

N0

2P
−

f(im),T H̄T
m

(
H̄mH̄T

m +
N0

2P
Im

)−1

H̄mf(im)

)−1

,

and

ζim =

(
f(im),T H̄T

m

(
H̄mH̄T

m + (N0/2P )Im

)−1

h̄m − a(im)

)2

.

It can be easily shown that both Cim
and ζim

are non-
negative, and PCim

ζim
can be viewed as the gain coming

from adding one more basis vector eim
. Hence, to minimize

ε
(m+1)
min , the (m + 1)th basis vector can be chosen from the

remaining index set such that the product of Cim
and ζim

is
maximized, i.e.,

im = arg max
i∈Im

Ciζi, (21)

where Im ∈ {0, · · · , L− 1}/{i0, · · · , im−1} is the remaining
index set. By following the above procedure, we can get one
more basis vector each time until the complete set of d basis
vectors is selected.

B. Scheme B: Subspace Formed by Leading Columns

For a very low SNR channel, we have the following special
case.

Proposition 1: When the channel SNR is asymptotically
low, we can minimize the average MSE by taking d column
vectors out of M as im = m, 0 ≤ m ≤ (d−1). In words, Md

is composed of the first d column vectors in M.
Proof: As the channel SNR goes low asymptotically, the
optimal codeword in (12) converges to the normalized version
of h̄d so that minimized MSE becomes

ε
(d)
min � P

(
1 − 2P

N0
h̄T

d h̄d

)
. (22)

By averaging ε
(d)
min over all possible channel realizations, we

get the averaged MSE as

ε̄
(d)
min = Eh

{
ε
(d)
min

}
� P

(
1 − 2P

N0
Eh

{
h̄T

d h̄d

})

= P

(
1 − 2P

N0
tr
{

Eh

{
h̄dh̄d

T
}})

, (23)

where tr(A) is the trace operator for matrix A. By substituting
h̄d = MT

d h̄ into (23) and after some manipulations, we can
get

ε̄
(d)
min � P

(
1 − 2P

N0
tr
{

M̃
T

d RāM̃d

})

= P

(
1 − 2P

N0

d−1∑
m=0

λim

)

where M̃d = [ẽi0 , · · · , ẽid−1 ]. Since λ0 ≥ · · · ≥ λL−1, we can
select im = m to minimize the averaged MSE, ε̄

(d)
min.

By Proposition 1, we should compute the suboptimal code-
word in the subspace spanned by the first d specific bases when
the SNR is asymptotically low. It is interesting to consider the
system performance when another basis set is applied, say, the
standard basis. This is stated in the following proposition.

Proposition 2: When the standard basis is applied to the
subspace filtering in (12) for a channel with asymptotically
low SNR, the output MSE is no less than

P

(
1 − 2P

N0

L−1∑
m=L−d

λ̄m

)
,

where λ̄m is the average power of the mth element in h̄, i.e.,
λ̄m = E{|hL−m|2}.
Proof: The proof is similar to that in Proposition 1 and, thus,
omitted here.

Proposition 3: If d < L, the use of the specific basis for
subspace filtering specified in Proposition 1 achieves lower
MSE than the standard basis given in Proposition 2.
Proof: Using Proposition 3 in [11], we have

d−1∑
m=0

λm >

L∑
m=L−d+1

λ̄m.

Therefore, the claim is true.
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ε
(m+1)
min = P

(
1 −

(
MT

m+1h̄
)T
((

MT
m+1H̄

)
(MT

m+1H̄)T +
N0

2P
Im+1

)−1 (
MT

m+1h̄
))

= P

(
1 −

[
h̄m

a(im)

]T
[

H̄mH̄T
m + N0

2P
Im H̄mf(im)

f(im),T H̄T
m ||f(im)||2 + N0

2P

]−1 [
h̄m

a(im)

])
(19)
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Fig. 2. The BER as a function of the SNR value for different codewords
under different subspace ranks (1, 3 and 5) and selection schemes (A and B).

VI. SIMULATION RESULTS

We test the performance of the subspace-based codeword
with different dimensions of the subspace and various input
SNR. The system parameters are chosen as follows: ∆ = 1
ns, Γ = 20.5 ns (CM3), L = 120, Ts = 10 ns. The
reported results are the average over 1000 independent channel
realizations. In the first simulation, we evaluate the system
performance in terms of the bit error rate (BER) and consider
subspaces of rank 1, 3 and 5. The performance curve of the
CPPUWB/CLO is also shown to demonstrate the performance
improvement by the use of the codeword in Fig. 2. The BER
performance of CPPUWB/CLO is the worst. The performance
gap between different ranks and different subspace selection
schemes becomes wider as SNR becomes larger. Furthermore,
the two curves corresponding to the two rank-1 codewords
almost overlap with each other. In other words, we can always
select the first column e0 as the first basis vector without search
to save the computational cost.

Next, the proposed precoding schemes are compared with
the partial Rake (P-Rake) receiver [12] using maximal ratio
combining (MRC) and the partial pre-Rake (PPR) in [13]
for the BER performance in Fig. 3. Again, the performance
curves of CPPUWB/CLO and the full-rank code are plotted as
benchmarks. It is observed that the performance gap between
5-finger P-Rake/MRC and Rank-5 PPR is almost indistin-
guishable. By utilizing the second order channel statistics, the
proposed reduced-rank precoding scheme outperforms PPR
greatly at the cost of slightly increased feedback burden and
more computational complexity for codeword construction.
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Fig. 3. The BER as a function of the SNR value for the conventional Rake
receiver and various precoding schemes.
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