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Abstract—In this paper, we propose a MIMO precoding
transceiver to achieve data secrecy at the physical layer. The
proposed system exploits the Restricted Isometry Property (RIP)
widely used in compressive sensing to encrypt the data. Because
the channels at the legitimate receiver and the eavesdropper
are inherently different, the corresponding sensing matrices are
different. Thus the eavesdropper cannot decode the data suc-
cessfully. More specifically, when full channel state information
(CSI) at the legitimate receiver is known to the transmitter, the
proposed precoder can simultaneously maximize receive SNR and
attain secrecy. Simulation results corroborate theoretical results,
and show that the proposed system enjoys different advantages
when different recovery algorithms are used.

Index Terms — Physical layer secrecy, precoder, transceiver
design, compressive sensing (CS), MIMO wiretap channel.

I. INTRODUCTION

In wireless communications, security issue becomes more
pronounced because the transmitted data can be accessed by
some unauthorized users. Nowadays most of the commu-
nications systems encrypt data at the network layer, where
key-based encryption techniques are adopted to protect data
from stealing. Recently there have been several interesting
results on attaining security at the physical layer. A main
motivation for physical-layer security is that the channels for
different users are generally different. The channel discrepancy
can be used to encrypt data in a natural way. That is, the
channel characteristics of individual users can be treated as
“unique key” to encrypt confidential information. The number
of keys is theoretically infinite, because the coefficients of the
baseband channel are complex numbers. First of all, Wyner
investigated the scenario that the transmitter sends information
to the legitimate receiver but the information is intercepted
by an eavesdropper through a so called wiretap channel.
Extending Wyner’s results, the authors in [2] characterized
the secrecy capacity for the non-degraded discrete memoryless
wiretap channel. Several existing precoding techniques for
secrecy over MIMO wiretap channels were reviewed in [3].

In this paper, we assume that the transmitter knows only the
CSI information of the legitimate user. In addition, the key or
the precoding information is known only to the transmitter and
the legitimate user, but not to the eavesdroppers, as in [4]. We
propose a MIMO precoding system that can achieve the goals.
The proposed system can be modeled as an underdetermined
linear system. Thus the recovery algorithms designed for
Compressive Sensing (CS) can be used to reconstruct the trans-
mitted signals. More specially, when the transmitter knows full
CSI of the legitimate receiver (CSI of the eavesdroppers is
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Fig. 1. The proposed system with MIMO wiretap channel.

not needed), we propose an optimal precoder for maximizing
the instantaneous SNR. That is, the proposed precoder can
simultaneously maximize the SNR as well as attain secrecy.
Combining the analysis for both the legitimate receiver and
the eavesdroppers, we use two recovery algorithms, which are
the simplest Orthogonal Matching Pursuit (OMP) [6] and the
most complicated Dantzig selector [7] with the better recov-
ery performance, are conducted to explain these advantages.
Simulation results corroborate the theoretical results.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Problem Formulation for the Legitimate Receiver

The block diagram of the proposed system is shown in
Fig. 1. At the first stage, each of the elements of a K × 1
symbol vector x is randomly allocated to K elements of
an L × 1 vector s; the other L − K elements are inserted
zeros. Assume L > K, s is therefore a sparse vector. For
example, let K = 3 and the elements of the symbol vector
x ∈ {−1, 1}. If L = 35 and x =

[
1 −1 −1

]T
, by

randomly allocating the elements of x to s, a possible s can be
s =

[
0 1 0 −1 0 · · · 0 −1

]T
. A vector s which

only has K nonzero elements is usually called K-sparsity, i.e.,
∥s∥0 = K. The bit rate of s is defined as

Ir =
log2 2

K
(
L
K

)
L

=
K + log2

(
L
K

)
L

. (1)

Let Nt and Nr be the numbers of transmit and receive
antennas respectively, and let Nt > Nr. The complex MIMO
channel Hc ∈ CNr×Nt is assumed to be independent and iden-
tically distributed (i.i.d.) CN (0, 1); therefore, the magnitude of
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the channel coefficients is Rayleigh distributed. Additionally,
we assume that the channel is quasi-stationary so that it does
not change for several symbols, e.g., see [5], [8], and [9].
The encryption problem for the legitimate receiver can then
be formulated as

yc = HcWcs+ nc, (2)

where nc ∈ CNr×1 is a complex noise vector whose entries are
i.i.d. CN (0, σ2

n), and Wc ∈ CNt×L is a complex precoder. For
the proposed system, we choose L > 2Nr so that (2) becomes
an underdetermined linear model and Ψ = HcWc ∈ CNr×L

is called the sensing matrix. Since s is a sparse signal and
(2) is an underdetermined linear model, s can be recovered
by using the CS recovery techniques if the sensing matrix Ψ
satisfies the RIP (see [10]), which is defined as follows,

Definition 1: Given the index sets I ⊂ {1, 2, . . . , L}, a
vector a ∈ R|I| and a matrix Ψ ∈ RM×L, the matrix Ψ
is said to satisfy the Restricted Isometry Property (RIP) with
parameter (K, δ) and K ≤ M , if the following inequality
holds.

(1− δ)∥a∥22 ≤ ∥ΨIa∥22 ≤ (1 + δ)∥a∥22,

where 0 ≤ δ ≤ 1, and ΨI consists of the columns of Ψ with
indices I and |I| ≤ K.

For systems satisfying the RIP, the recovery algorithm such
as linear programming (LP) can be used for solving the
ℓ1 optimization problem, and yielding an exact solution in
noiseless channels. A popular family of sensing matrices is
the M ×L (real- or complex-valued) random matrices, which
satisfy the RIP and lead to a high probability of recovery
rate. This paper uses random matrices with i.i.d. entries.
The distribution of the entries can be Gaussian or Bernoulli
distribution with zero mean and variance 1/L. It is mentioned
in [10] that if the entries of the sensing matrices are generated
in this way, the RIP holds and the underdetermined linear
model can be perfectly recovered using the ℓ1 optimization
solutions whenever

K ≤ β
M

ln(L/M)
, (3)

where β is a constant, and now M = Nr. In current
communication systems, the number Nr of receive antennas
is generally not large enough to make Ψ meet the RIP in
(3) for a moderate K. From (3), the number K of sparsity
increases as M increases. To increase M , we first convert the
complex-valued system into an equivalent real-valued system
and then repeatedly transmit the vector s by T times, which
are described separately as follows:

We reformulate the complex-valued system into a real-
valued system. More specifically, by rearranging (2), we have[

ℜ{yc}
ℑ{yc}

]
︸ ︷︷ ︸

y

=

[
ℜ{Hc} −ℑ{Hc}
ℑ{Hc} ℜ{Hc}

]
︸ ︷︷ ︸

H

[
ℜ{Wc}
ℑ{Wc}

]
︸ ︷︷ ︸

W

s

+

[
ℜ{nc}
ℑ{nc}

]
︸ ︷︷ ︸

n

, (4)

where y ∈ R2Nr×1, H ∈ R2Nr×2Nt , W ∈ R2Nt×L and n ∈
R2Nr×1. Now the sensing matrix is Φ = HW ∈ R2Nr×L,
and its number of rows is doubled compared to the complex-
valued system. As a result, the number of sparsity K increases.
Herein our designs and performance analysis are based on the
real-valued system in (4). The real-valued precoder W in (4)
can be expressed as

W =
[
P1 P2 · · · Pα

]
, (5)

where Pi ∈ R2Nt×R, 1 ≤ i ≤ α is a sub-precoder and R is
the rank of the channel matrix H. α is a positive constant and
is defined as

α =

⌊
L

R

⌋
.

Note that α should be designed to satisfy the RIP in (3),
and we will explain later once P1 is determined, the other
sub-precoders Pi, i ̸= 1, can be determined from P1 easily.
Assume that E{ssH} = (K/L)σ2

sIL, where σ2
s is the variance

of the sparse vector s. From (4), the instantaneous signal-to-
noise ratio (SNR) γ is defined as

γ =
1

σ2
n

E{∥HWs∥22}
KNt

. (6)

Moreover, we can repeatedly transmit the same sparse vector
using different precoders to increase the number of rows of the
sensing matrix. Due to the variant nature of wireless channels,
each of the repeated sparse vector experiences different MIMO
channels. Let the repeating number be T . From (4), the
proposed system with repeated transmission can be formulated
as follows,

y =

 y1

...
yT

 =

 H1

. . .
HT


 W1

...
WT

 s+

 n1

...
nT


=HWs+ n = Φs+ n, (7)

where H ∈ R2TNr×2TNt is a block diagonal matrix with
different 2Nr × 2Nt real channel matrices on the diagonal,
W ∈ R2TNt×L is an equivalent precoder with repeating factor
T , and Φ ∈ R2TNr×L is an equivalent sensing matrix. In a
slow fading environment, the repeated sparse vectors of s may
experience similar MIMO channels. This does not affect the
RIP of the proposed system, and may not affect the long-
term time average recovery performance. However this may
affect the short-term time average performance, e.g., channel
with serious fading and thus resulting in poor performance
during this period. The penalty is that the decoding latency
becomes long, which is limited by the channel coherent time.
Now M = 2TNr, by properly choosing T , the sensing
matrix satisfies (3) and can recover a sparse vector with high
probability. Due to the repeating transmission, the equivalent
instantaneous SNR Γ can be expressed as

Γ =
1

σ2
n

E{∥HWs∥22}
TKNt

. (8)
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Similar to (1), the bit rate with repeating transmission then
becomes

IR =
Ir
T

=
log2 2

K
(
L
K

)
TL

=
K + log2

(
L
K

)
TL

. (9)

B. Problem Formulation for Eavesdropper

The wiretap channel may be applied to the proposed system
and the overall system is shown in Fig. 1, where the com-
munications is eavesdropped. To steal data, the eavesdroppers
need to know the repetition number T , and the numbers of
transmit and receive antennas, i.e. Nt and Nr respectively.
This increases the decoding effort for eavesdroppers to obtain
these parameters before reconstructing the received signals. If
the eavesdropper knows T , Nt and Nr, the received signal
ye ∈ R2Nr×1 of the eavesdroppers can be represented as

ye = HeWs+ ne = Φes+ ne, (10)

where Φe = HeW is the equivalent sensing matrix to the
eavesdroppers. The subscription ’e’ is added to reflect the fact
that the experienced channels of the eavesdroppers are not
the same as the legitimate receiver. When T is known to the
eavesdroppers, the problem after repetition can be formulated
as follows,

ye = HeWs+ ne = Φes+ ne, (11)

where Φe ∈ R2TNr×L is the overall equivalent sensing matrix
of the eavesdropper. The secrecy of the proposed system is
attained as explained as follows: The CSI of individual users
is different unless they positions are very close in distance,
i.e., within one half distance of the wavelength. For instance
letting the carrier frequency be 2.3 GHz, the distance is λ/2 =
c/(2f) = 3 × 1010/(2 × 2.3 × 109) ≈ 6.5 cm. However if
the distance is only 6.5 cm, the legitimate receiver is alert to
the eavesdroppers easily. Therefore, it is reasonable to assume
He ̸= H. Since the precoding matrix W is highly related to
the H, and is used as the sensing matrix for decoding, it is
very unlikely that the eavesdroppers can reconstruct the signals
without knowing the CSI of the legitimate receiver. In addition,
later we will discuss that the optimal design of the precoder is
not unique, and thus a channel-independent random matrix can
be included into the precoder without affecting the optimality.
This random matrix can be generated by a unique key (or seed)
known only to the transmitter and the legitimate receiver. As
a result, this property further enhances the encryption, and
the eavesdroppers do not have chance to steal data without
knowing the generation key (seed) or the CSI of the legitimate
receiver H.

III. PROPOSED PRECODER

We describe how to design the precoders to encrypt the
transmitted information. The design criterion for the precoder
is to maximize the received SNR.

A. Precoder Design for Maximizing Received SNR
The goal of designing the precode is to simultaneously

achieve high receive SNR and attain encryption in wiretap
channel. Now we show how to design the sub-precoders Pi

to maximize the instantaneous SNR γ, and the equivalent
instantaneous SNR Γ defined in (6) and (8), respectively.
Letting ε2s = E{ssH}, the instantaneous SNR γ in (6) can
be shown to be

γ =
1

L

ε2s
σ2
n

∥HW∥2F
Nt

==
1

L

ε2s
σ2
n

∑α
i=1 ∥HPi∥2F

Nt
. (12)

From (12), maximizing γ is equivalent to maximizing the
following objective function:

max γ = max ∥HW∥2F = max
α∑

i=1

∥HPi∥2F .

If Pi, 1 ≤ i ≤ α, are designed independently (we will
explain this is true later), the terms ∥HPi∥2F and ∥HPj∥2F
can be maximized independently; that is, the maximization
problem does not need to be solved jointly. Also, since ∥·∥2F is
positive, it yields max

∑α
i=1 ∥HPi∥2F =

∑α
i=1 max ∥HPi∥2F .

From the above results, the instantaneous SNR in (6) can
be maximized by designing the sub-precoders Pi using the
following relationships:

max γ = max ∥HPi∥2F . (13)

Next we show that the equivalent instantaneous SNR Γ
in (8) is maximized if the instantaneous SNR γ for every
transmission is maximized. For notational convenience, let
γ(j) be the instantaneous SNR at the jth transmission. From
(8), Γ is expressed as

Γ =
K

L

ε2s
σ2
n

∥HW∥2F
TKNt

=
1

L

ε2s
σ2
n

∑T
j=1 ∥HjWj∥2F

TNt
. (14)

From (13), max
∑T

j=1 ∥HjWj∥2F ≡ max
∑T

j=1 γ
(j) for

{γ(j), 1 ≤ j ≤ T}. Moreover, individual transmissions are
assumed to be independent because channels are indepen-
dent. Since ∥ · ∥2F are positive value, max

∑T
j=1 γ

(j) ≡∑T
j=1 max γ(j). Thus we obtain the following relationships:

maxΓ ≡
T∑

j=1

max γ(j). (15)

From (13) and (15), we have the following proposition.
Proposition 1: The SNR Γ in (8) is maximized if the sub-

precoder {Pi, 1 ≤ i ≤ α} in (5) is designed to maximize γ for
every transmission. That is, Γ is maximized if Pi is designed
to maximize the following value

α∑
i=1

max ∥HPi∥2F , (16)

for all T transmissions.
The result in Proposition 1 shows that the proposed precoder

is to maximize the Frobenius norm of Φ. This result is similar
to that in [11], where the authors shows that a lower bound on
the mean-squared error is achieved when ∥Φ∥2F is maximized.
Next let us explain how to design the precoders when the
transmitter side knows full CSI.
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B. Design Strategy for Full CSI

If the transmitter side has full CSI, we discuss how to design
the optimal precoder Pi to maximize the SNR Γ. From (16),
max ∥HPi∥2F = max tr(PH

i HHHPi), where PH
i HHHPi is

a Hermitian matrix. Since H is not a square matrix, we need to
do a little trick to obtain the optimal solution. Letting Q be an
Nt ×Nt unitary matrix and Q = [Pi Q0], we can formulate
tr
(
QHHHHQ

)
as

tr
(
QHHHHQ

)
= tr

(
PH

i HHHPi

)
+ tr

(
QH

0 HHHQ0

)
.

(17)

From (17), we have the inequality

tr
(
PH

i HHHPi

)
≤ tr

(
QHHHHQ

)
=

(
HHH

)
.

Performing the SVD for H, i.e., H = UΣV̂H , we have

tr
(
PH

i HHHPi

)
≤ tr(Σ2). (18)

Equality holds if and only if Pi = V̂Ui, i.e., a column
orthonormal matrix. Thus Pi = V̂Ui for i = 1, . . . , α, where
V̂ ∈ R2Nt×R is the right singular vectors corresponding to the
R largest singular values of H, and Ui is an R × R unitary
matrix.

Proposition 2: The optimal sub-precoder Pi for maximiz-
ing the instantaneous SNR of the proposed system is of
the form Pi = V̂Ui, and V̂ is the right singular vectors
corresponding to the R = rank(H) largest singular values of
H. Moreover, the resulting SNR is tr

(
Σ2

)
where Σ is the

singular value matrix of H. The solutions can be obtained by
letting Pi = V̂Ui for i = 1, . . . , α and the optimal precoder
W in (5) can be designed by

W = V̂
[
U1 U2 · · · Uα

]
. (19)

Remark 1: The unitary matrices Ui where 1 ≤ i ≤ α
can be obtained by performing the QR decomposition for
several random square Gaussian matrices, i.e., ∥HV̂Ui∥2F =
tr(UH

i V̂HHHHV̂Ui) = tr(V̂HHHHV̂), which does not
destroy the optimality in Proposition 2.

Now consider the precoders used for repeatedly transmitting
the sparse vector by T times so as to satisfy the RIP in (3).
The equivalent received signal in (7) can be rewritten as

y = H

 V̂1

. . .
V̂T


 U11 · · · U1α

...
. . .

UT1 UTα

 s+ n

= HVUs+ n = Φs+ n, (20)

where V is the overall precoder, which is a 2TNt×TR block
diagonal matrix, V̂i is the singular vectors corresponding to
the R largest singular values of Hi for i = 1, . . . , T , and U
is the encryption matrix that is a TR×αR block matrix with
every sub-block being an R × R unitary matrix obtained by
using Remark 1.

Remark 2: According to (20), encryption is attained via
two aspects. First, according to Remark 1, the encryption
matrix U is independent of channels, and can be generated
from random matrices with a unique key (or seed) known only
to the transmitter and the legitimate receiver. Without knowing

σ

σ

σ

σ

σ

σ

Fig. 2. The eavesdropper estimates the different levels of full CSI at the
transmitter.

this key (or seed), it is very unlikely that the eavesdroppers
can recover the received signals. Secondly with full CSI, the
proposed system can achieve the maximum SNR by using
the optimal precoder. Meanwhile the system is automatically
encrypted because V̂i is from the unique CSI between the
transmitter and the legitimate receiver.

IV. SIMULATION RESULTS

In all experiments, the data information is encoded into
sparse vectors with length L = 64, and the nonzero elements
are ±1. More than 100000 iterations were conducted to com-
pute the recovery rate. The MIMO antennas are Nr = 4 and
Nt = 7. The 16 unitary matrices, i.e., Ui were generated by
conducting the QR decomposition for 16 4×4 square Gaussian
random matrices. Three recovery algorithms were used to
reconstruct the signals including the Orthogonal Matching
Pursuit (OMP) and the Dantzig selector. Note that the Dantzig
selector with the most powerful recovery algorithm in CS
currently can be regarded as a benchmark.
Experiment 1. The eavesdroppers knew U and different
levels of CSI. Consider the worst case that the eavesdroppers
know U and also different levels of noisy CSI. The channel
known to the eavesdropper is He = Hc + σeδ, where δ is
assumed to be i.i.d. CN (0, 1) and σ2

e is the mean squared
estimation error. Since the eavesdropper uses He to obtain
the precoder Ve, which is very different from the true pre-
coder V. Consequently, it results in very different equivalent
sensing matrix and the recovery performance of eavesdroppers
degrades significantly. Let the SNR be 30 dB. Fig. 2 shows the
simulation results. Observe that the recovery rate is low for the
eavesdropper. With σ2

e = 0.01, the recovery rate is only 65%
for one sparsity using the benchmark Dantzig selector. This
shows that the Dantzig selector is very sensitive to the accuracy
of the CSI. For σ2

e = 0.25, the eavesdroppers can hardly
reconstruct any data with either OMP or the Dantzig selector.
Therefore, recovery performance is poor for the eavesdroppers
if they do not know the exact CSI.
Experiment 2. Recovery rate for different SNR. Let T = 5,
Fig. 3 shows the recovery performance for SNR = 10, 20
and 30 dB. Observe from the figure, the Dantzig selector can
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Fig. 3. Recovery rate with different SNR.

Fig. 4. Recovery rate for different T .

perfectly recover the sparse vector with K ≤ 10 when SNR
is greater than 20 dB. On the other hand, although the OMP
algorithm is simple but its recovery performance is far worse
than that of the Dantzig selector.
Experiment 3. Recovery rate for different repeating num-
bers T . Let the SNR be 25 dB, Fig. 4 shows the recovery
performance for T = 5 and 7. Observe that for the Dantzig
selector, decreasing T from 7 to 5 does not degrade the
performance seriously. On the other hand, for the OMP al-
gorithm, increasing T improves the performance significantly.
In addition, the Dantzig selector with T = 5 outperforms
the OMP algorithm with T = 7. Since increasing T would
decrease the bit rate, this example shows that using powerful
recovery algorithm can improve bit rate for the proposed
system efficiently.
Experiment 4. Recovery rate using the proposed precoder.
The performance using the proposed precoder is shown in
Fig. 5. From the figure, although the Dantzig selector needs
high computational complexity, it is not that sensitive to
the precoder compared to the OMP algorithm. Moreover, at
K = 12 the recovery rate of the Dantzig selector is degraded
as 8% approximately. For OMP algorithm, Fig. 5 shows that
if K = 3 for the randomized precoder, then the recovery rate

Fig. 5. Recovery rate using the precoder and the randomized precoder.

is approximately 80%. In other words, the eavesdropper using
OMP algorithm and does not obtain the truly precoder, so the
eavesdropper desires to obtain the information hardly.

V. CONCLUSION

In this paper, we have proposed a precoding to achieve data
secrecy at the physical layer. The precoding procedure makes
the proposed system an underdetermined linear system. Thus
recovery algorithms for compressive sensing can be used to
reconstruct the transmitted signals. When full CSI is available,
the proposed precoder can maximize the receive SNR. At the
same time, the proposed precoder can be regarded as a key to
encrypt the signals. If the eavesdroppers do not know the key,
it is almost unlikely for eavesdroppers to reconstruct the data.
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